Passwords Decay Words Endure: Secure and Re-usable Multiple Password Mnemonics

Umut Topkara, Mikhail J Atallah, Mercan Topkara

Department of Computer Science Purdue University West Lafayette, 47906, IN, USA

What is your password?

Alternate Solutions

- Require change in infrastructure
 - Graphical passwords, tokens, etc.
- Require trusted computing power
 - Browser plugins, PDA, tokens, etc.

Security Usability Trade-off

- Our Approach: Make passwords more usable
 - Write down your passwords *
 - Complement with secure password mnemonics
 - Something you have
 - Something you know

Mnemonic Sentence

EMPATHE:

rEusable Mnemonics for Password AuTHEntication

- Automatically generated mnemonics
- Support truly random passwords
- Handle multiple passwords with same mnemonic
- No domino effect in password compromise
- Write down a complete description of the password
- Easy user reconstruction of the passwords
- No requirement of additional computing power
- No change in existing infrastructure
- Compatible with existing passwords
- Keep the mnemonic, change the password

Usage Scenario

- Select a mnemonic sentence
- Choose strong passwords
- Print a helper card
- Authenticate

Authentication with Helper Card

• "The birth of ice-cream: why and how we sneeze at midnight."

Authentication with Helper Card

1	2	3	4	5
b	i	r	t	h
-5	-4	-3	-2	-1

Helper Card

- Secret Sharing
- Without Encryption
 - Random P
 - Random R_s
 - Public (P XOR $R_s = R_h$)
- $e(R_s) = W = d^{-1}(R_s)$ (e.g., W="birth")
- $R_s = d(W) = d(W[1]).d(W[4]).d(W[-3]).d(W[-1])$ d(birth) = d(b).d(t).d(r).d(h)
- $p_i = d(W[j]) \text{ XOR } r_{h,i} = lookup(i,W[j])$
- lookup(i,W[j])=d(W[j])+z mod(95)

Helper Card Security

- Adversary with password file:
 - Offline cracking
 - 958 equally probable passwords
- Adversary with helper card:
 - Login trials
 - 9⁴ possible passwords per account
 - Most systems regulate login trials

Multiple Passwords

- Adversary with one password
 - No domino effect
 - Passwords independently chosen
- Adversary also with helper card
 - T-?4!5Fv \rightarrow "birth"
 - P(ice-cream) = P(ice-cream | birth)
 - Mnemonic sentence generation

Mnemonics

- Reminder for hard to remember information
 - e.g. unrelated sequence of objects
 - My Very Eager Mother Just Sewed Us New Pajamas
- [Miller 1956, Human Memory And The Storage Of Information]:
 - Semantic association: Associate a meaning
 - e.g., Manhattan, Italy Map
 - Progression of ideas: Connect as a story
 - e.g., May I have a large container of coffee? (3.1415926)
 - Syntactic Coherence: As grammatical as possible
 - Short encoding: Size of the story
 - e.g., 1101 0110 1100 vs 13 6 12

What's wrong with mnemonics?

Has to be easy to remember:

An apple a day sends the doctor away

- Has to be hard to guess:
 - Regularity in language can be a pitfall:
 - My (dog|cat|pet)'s name is (fido|dusty...) > M(d|c|p)ni?
 - P(mother) ≠ P(mother | birth)
 - Need high entropy word sequences
- Mnemonic fatigue:
 - Hard to come up with new memorable mnemonics
 - Multiple accounts
 - Periodic password reset

Mnemonic Generation

- Start with:
 - Set of human-crafted memorable sentences
 - Set of words, $R_{s,i} = d(W_i)$
- Result:
 - Set of mnemonic sentences for R_{s,I}
 - Grammatical
 - Probably easy to remember
- Use a subset of English
 - Restricted, $P(W_i) = P(W_i | W_j)$
 - Large enough for passwords

Conclusion

- People are good in keeping cards secure
- Many already use mnemonics
- First step
 - Single mnemonic for multiple Passwords
 - Good security and usability
- Periodic password changes now easy
- Shared passwords possible
- Recall rarely used passwords

Future work

- Further improve against brute force
- More effective use of Natural Language Processing
- USENIX'07: Authentication In Constrained Environments

Thanks

• Anonymous referees

• Questions?

