Hiding Virtues of Ambiguity

Watermarking of Natural Language Text Through Synonym Substitutions

Umut Topkara

Mercan Topkara Mikhail J. Atallah

Department of Computer Sciences Purdue University West Lafayette, 47906, IN, USA

Problem and Key Idea

- Designing a resilient, practical and easy-to-use watermarking system for natural language text
 - How can you be sure that your articles/ papers/ blogs/ e-mails are not re-used?
 - Need a computationally light detection process (not Al complete)
 - Adversary can foil string matching
- Using *robust* synonym substitution for natural language watermarking
 - We favor more *ambiguous* alternatives (i.e. homographs)
 - smart bright
 - The resilience stems from the fact that
 - the adversary does not know *where* the changes were made
 - automated disambiguation is a major difficulty

What is Natural Language Watermarking?

- Enable copyright holders to enforce their intellectual property ownership on text
- Value of Text:
 - Meaning
 - Grammaticality
 - Style

• Mark the text such that:

- The marking modifications do not reduce text's value
- Adversary will reduce text's value to remove the mark

Natural Language Challenges

- Short documents
- Low embedding bandwidth
 - Small number of alternative forms
- Not all transformations can be applied to a given sentence (John went to school.)
 - Grammar
 - Vocabulary
 - Style and fluency

(School was gone by John.)

- (John matched to school.
- (John didn't not go to school.)

Natural Language Challenges

- Powerful Adversary
 - Can automatically edit individual sentences
 - Can permute sentence order
 - Can delete or insert sentences
 - Has access to the same data and software resources

Previous Approaches

• Generating the cover text (only for Steganography)

- Passive Warden
- Cover text has no "value"
 - Spammimic (M. Chapman and G. Davida, 2002)
- Modifying a given cover text
 - Active Warden
 - Proposed for steganography as well as watermarking

- Performs robust synonym substitution
 - Ranks alternatives for substitution according to their ambiguity

• Quantifies the distortion

- Keeps the distortion on the original text below a given threshold
- Restricts the flexibility of the adversary while modifying the watermarked text
- Does not require either the original text or word sense disambiguation at detection
- Follows Kerckhoff's principles

• Build a graph, G, of (word, sense) pairs

- Build a graph, G, of (word, sense) pairs
 - WordNet

- Build a graph, G, of (word, sense) pairs
 - WordNet
- Assign weights to the edges
- Using a "word similarity measure" Generalization Social Group (Hypernymy) n 1 Organization Set **Specialization** n 5 n 1 (Hyponymy) Troupe Company Party n 2 n 3 n 1 10

- Word similarity fulfills other requirements expected from a distance function, d_i()
 - Boundedness : finite distance between any given word pair
 - Symmetry: $d_i(a,b) = d_i(b,a)$
 - Equality: $d_i(a,b) = 0$ if and only if a = b

Quantifying Distortion

• Watermark embedding distortion

$$\sum_{s^{N} \in S^{N}} \sum_{k^{N} \in K^{N}} \sum_{m \in M} \frac{1}{|M|} p(s^{N}, k^{N}) d_{1}^{N}(s^{N}, f_{N}(s^{N}, m, k^{N})) \leq D_{1}$$

• Maximum distortion an adversary can introduce

$$\sum_{x^{N} \in X^{N}} \sum_{y^{N} \in Y^{N}} d_{2}^{N}(x^{N}, y^{N}) A^{N}(y^{N} | x^{N}) p(x^{N}) \leq D_{2}$$

• "Information-theoretic analysis of information hiding", P. Moulin and J. A. Sullivan, 2003

- for each word, w_i, in the given text
 - bit_c = M[c]
 - if there is only one neighbor, $w_{\rm c}$ that encodes $\text{bit}_{\rm c}$ then replace \boldsymbol{w}_{i}
 - if there are more than one neighbor that encodes bit_c
 - for each neighbor, $w_{\rm c}^{},$ of $w_{\rm i}^{}$ calculate the expected distortion value for the adversary

$$E(d_{2}(w_{c};w_{i},s_{k})) = \frac{\sum_{s_{l} \in S(w_{c})} sim(w_{c},s_{l};w_{i},s_{k})}{|S(w_{c})|}$$

• pick the w_c that maximizes the $E(d_2(w_c; w_i, s_k))$

Equimark: Detection

- Build the same graph, G, of (word, sense) pairs
 WordNet
- Assign the same weights to the edges
 - Using the same "word similarity measure"
- Select the same sub-graph, G^w, of G using k
- Color G^w using k
- For each word in the watermarked text
 - If color is gray skip
 - If color is blue concatenate 1 to M'
 - If color is green concatenate 0 to M'

Equimark in Action

They had to organize a party to search for help.

They had to form a company to seek aid.

They had to form a company to seek aid.

Make	Business	Get	Assistance
Organize	Troupe	Search	Help
Shape	Society	Attempt	Economic Aid
Forge	Party	Inquire	Care

They had to make a society to get assistance.

They had to forge a business to get economic aid.

Building Equimark: Experiments

- Data Resources:
 - A sense-tagged corpus
 - Semantic Concordance (Semcor 2.1)
 - WordNet
 - http://wordnet.princeton.edu/perl/webwn
- Software Resources:
 - WordNet::QueryData
 - WordNet::Similarity
 - <u>http://marimba.d.umn.edu/cgi-bin/similarity.cgi</u>
 - We have used *pathlen()* as similarity metric

Quantifying Distortion

Conclusion

- Protecting intellectual property rights for text
 - How can you be sure that your articles/ papers/ blogs/ e-mails are not re-used?
 - Need a computationally light detection process (not Al complete)
 - Adversary can foil string matching
 - Even though you do not use watermarking, we can help
- Embedding needs sense disambiguation, but detection
- Equimark embeds watermark into natural language text through *robust* synonym substitution
 - achieves resilience by
 - giving preference to ambiguity-increasing transformations
 - using the maximum capacity below the distortion threshold

Future Work

- Enabling more domain-specific distance (word similarity) functions
- Increasing capacity and resiliency through the use of Wet Paper Codes and/or Error Correction Codes
- Testing copyright infringement detection performance
- Using a more powerful dictionary
 - "Bush returned to Washington D.C."
 - "The president came back to the capital"

Meaning Equivalent Changes

- Context dependent synonyms
 - Semi automatic, interactive system
 - Adversary can not automate

"the sleuth" \longleftrightarrow "Sherlock Holmes" (A. C. Doyle) "the sleuth" \longleftrightarrow "Hercule Poirot" (A. Christie)

Generalization substitutions

- moving up the "is_a" hierarchy
- Adversary has to replace the general by the specific

"lion" ↔ "big cat" "kangaroo" ↔ "herbivore"

"kangaroo" ← → "marsupial"

