Information Hiding Through Errors: A Confusing Approach -

Mercan Topkara Umut Topkara Mikhail J. Atallah
Department of Computer Science
Purdue University
West Lafayette, IN, 47906, USA
{mkarahan,utopkara,mja}@cs.purdue.edu

ABSTRACT

A substantial portion of the text available online is of a kind that tends to contain many typos and ungrammatical
abbreviations, e.g., emails, blogs, forums. It is therefore not surprising that, in such texts, one can carry out
information-hiding by the judicious injection of typos (broadly construed to include abbreviations and acronyms).
What is surprising is that, as this paper demonstrates, this form of embedding can be made quite resilient.
The resilience is achieved through the use of computationally asymmetric transformations (CAT for short):
Transformations that can be carried out inexpensively, yet reversing them requires much more extensive semantic
analyses (easy for humans to carry out, but hard to automate). An example of CAT is transformations that
consist of introducing typos that are ambiguous in that they have many possible corrections, making them harder
to automatically restore to their original form: When considering alternative typos, we prefer ones that are also
close to other vocabulary words. Such encodings do not materially degrade the text’s meaning because, compared
to machines, humans are very good at disambiguation. We use typo confusion matrices and word level ambiguity
to carry out this kind of encoding. Unlike robust synonym substitution that also cleverly used ambiguity, the
task here is harder because typos are very conspicuous and an obvious target for the adversary (synonyms are
stealthy, typos are not). Our resilience does not depend on preventing the adversary from correcting without
damage: It only depends on a multiplicity of alternative corrections. In fact, even an adversary who has boldly
“corrected” all the typos by randomly choosing from the ambiguous alternatives has, on average, destroyed
around w/4 of our w-bit mark (and incurred a high cost in terms of the damage done to the meaning of the
text).

1. INTRODUCTION

Natural language watermarking traditionally targets grammatical, or even edited text where preserving the
grammaticality and style is one of the main concerns.!»> The concern for quality of the watermarked text forces
systems to perform at a low embedding bandwidth and to put emphasis on the accuracy of natural language
processing components.

However, a large percentage of daily exchanged digital text is in the form of e-mails, blogs, text messages, or
forums; which we will call cursory text. This type of text is usually written spontaneously and is not expected
to be grammatically perfect, nor to comply with a strict style. The freedom from being error-proof and from
following a style, creates an opportunity for improved information hiding by applying completely new approaches
tailored for cursory text, or by adapting the existing mechanisms that were proposed for edited text.

It is possible to use many idiosyncrasies of cursory text for information hiding, by modifying them or judi-
ciously injecting them to the text. Such idiosyncrasies include:

e Unintentional typographical errors (character typing errors such as “teh” instead of “the”).

e Well-known abbreviations and acronyms (e.g. using “ur” instead of “you are” or “omg” for “oh my god”,
“b4” for “before”).

e Transliterations such as leet-speak (e.g. “l133t” for “leet”), pig latin, gyaru-moji or inversion of syllables
such as verlan (e.g. “my nopia is kenbro” instead of “my piano is broken”).

Portions of this work were supported by Grants 1IS-0325345 and CNS-0627488 from the National Science Foundation, and by
sponsors of the Center for Education and Research in Information Assurance and Security.

e Free formatting, such as unnecessary carriage returns or arbitrary separation of text into paragraphs, or
varying line sizes.

e Usage of emoticons to annotate text with emotions or attitudes (e.g. “)” for annotating a pun).
e Colloquial words or phrases (e.g. “gonna” or “ain’t nothin”’).

e Jargon specific to the age or interest group (e.g. “DCT” is used for “Discrete Cosine Transform” in
engineering jargon, and it is used for “Divine Command Theory” in philosophy jargon.)

e Free usage of capitalization and fonts for richer annotation (e.g. “I AM joking”).

e Mixed language use, where words from several different languages are used together in the same text (e.g.
“We always commit the same mistakes again, and ’je ne regrette rien’!”).

e Replacing native characters of an alphabet with latin characters such as writing in “faux cryllic” or writing
“sh” instead of letter “g” in Turkish.

e Grammatical errors.

In this work, we focus on using the typographical errors (henceforth referred to as typos), broadly construed
to include the above-mentioned acronyms and abbreviations, for increasing the bandwidth of natural language
information hiding. When resilience is important (as in watermarking), we make use of ambiguity to make it
harder for the adversary to correct the typo. To illustrate this, consider the following example, based on the “lol”
acronym that is uncommon, if not unacceptable, in formal text, but very common in cursory text. According to
Wikipedia, “lol” has 17 different meanings that depend on the context in which it is used, including the following
few:

Internet slang: “lots of laughs”.

Legal and financial texts: “limits of liability”.

Culinary texts: “Land O Lakes” butter.

Travel texts: “Derby Field Airport” (less strange than “ord” for O’Hare airport — Derby Field is located
in Lovelock, Nevada)

Our current implementation has not yet automated the use of hard-to-reverse acronym substitutions such as
“lol” (we used it as an example because it has such a high degree of ambiguity to a text analysis software, yet
practically no ambiguity for a human reader).

As mentioned above, another way to introduce ambiguity is using latin characters while writing in a non-

sitir” (“it heats well”), and the last one is “iyi iitir” (“it illuminates well”). This ambiguity occurs due to the
many-to-one mapping of Turkish characters to ASCII characters. In its context, a human reader would not have
any problem in disambiguating the correct Turkish script of above phrase when written in ASCII. Even though
currently available automatic “de-asciifying” techniques® have an impressive average case performance on real
text, they will not resolve the ambiguities that have been injected with the intention to confuse an automated
“de-asciifying” system, such as the one in the above example.

Typos have the advantageous property of being common to all types of cursory text, e.g. emails, text messages,
forum posts, etc.; hence an information hiding system based on this notion has a wide range of applications.
They are usually injected into the text by their authors as a result of speed typing (e.g “teh” instead of “the”),
or incorrect spelling knowledge (e.g. “principal” instead of “principle” or “tommorow” instead of “tomorrow”)

TThe list of different meanings of “lol” can be made even longer — “acronymfinder.com” lists 62 different meanings for
4‘10177 .

among other reasons. Typos can occur at any part of the text. However some words are naturally harder to
spell or type with keyboard, hence typos occur more frequently with them.

Spelling checkers usually use the edit distance of typos between vocabulary words to suggest corrections. In
some cases several corrections are viable for the typo, and spelling correctors use additional side information
such as previously observed regularity of typos and models of the underlying natural language or similarity of
pronunciation to prioritize this correction list.#® The regularities in typos are usually due to proximity of key
locations on the keyboard, or mental proximity of syllables or words resulting from phonetic similarity. See
Section 6 for more information about spell checkers.

Humans are usually better than automated spelling correctors in typo correction, for this reason, spelling
correctors are usually insufficient to completely correct typos, and the author’s intervention is required for the
final decision. Human fluency in spelling correction also plays a role in the implicit correction of typos by readers
of cursory text. Humans use a combination of pattern matching (e.g., resolving “imlipcit” stands for “implicit”)
and a wide variety of side information that surpass the boundaries of one message exchange, such as shared
experience with the author (e.g., a reference to “Jerry” as “Gary”), and real life knowledge (“bear footprint”
caption under a human bare footprint picture).

While designing an information hiding system for cursory text using the typographical errors, the following
challenges should be taken into account:

e Preserving the value of the document. Even though the editorial quality, grammaticality or fluency of
text are less of a concern in cursory text, the result of the information hiding process still has to be easily
comprehensible by a human reader. Furthermore, some portions of the text may not tolerate any variations
since they are central to the meaning of the cover text, such as the meeting place in a memo.

e Automatic spelling checkers can be used to reduce the possibility of using typos for information hiding.

e The adversary might have access to a good model of cover text including a model of the text that was
previously generated by each author. The message exchanges can be strictly monitored, such as in company
mail accounts, or in blogs.

e The embedding bandwidth in natural language text is lower when compared to that of image, video or
audio, i.e., the number of words or sentences are comparable with the message length. For this reason
the hidden messages are embedded more densely in the cover text documents when compared to cover
documents of other media types.

We have designed two methods of embedding, one for an active adversary (which can be used for watermarking
applications), and one for a passive adversary (which can be used for steganography applications). The methods
use individual words to embed bits of the secret message. The only information required to read the hidden
message is the shared key that was used to embed the message in the first place. Both of the embedding methods
spread the modifications evenly throughout the cover text. They also provide the author with the flexibility to
exclude parts of the text from being modified by the embedding process. We will discuss these methods in
Section 3 and Section 4. See Section 5 for examples of marked text.

Section 6 briefly covers the literature on the evolution of written language use on the Web, as well as the
literature on spelling correction, and other relevant work in information hiding.

2. COMPUTATIONALLY ASYMMETRIC EMBEDDING WITH TYPOS

Robust synonym substitution cleverly used sense ambiguity to insert watermarks into text that are resilient
against an adversary who uses automated synonym substitution to remove a watermark.® This resilience was
achieved through the use of computationally asymmetric transformations (CAT for short): Transformations
(modifications to a cover document to embed a mark) that can be carried out inexpensively, yet reversing them
requires much more extensive analyses that necessitates strong artificial intelligence (easy for humans to carry
out, but hard to automate).

The task of robust watermarking with typo injection is harder than that using synonym substitution. There
are two major difficulties: i) typos are very conspicuous and an obvious target for the adversary (synonyms are
stealthy, typos are not) ii) adversaries can use spelling correction tools to undo the effect of embedding. In order
to overcome these difficulties we construct CATs with typos. We replace words with typos such that a spelling
checker will produce a long list of possible “corrections”, hence force the adversary to achieve the capability to
understand the underlying text to single out the original word from this list. The resilience of such CATs depend
on a multiplicity of alternative typo corrections.

For instance, a spelling checker will easily point the typo in the sentence “Don’t forget to bring the ake”.
However, the correction list will be rather long (ispell version 3.1.18 lists “Abe, ace, age, AK, AK e, AK-e, ale,
ape, are, ate, Ave, awe, axe, aye, bake, cake, eke, fake, Ike, jake, lake, make, rake, sake, take, wake” as alternative
corrections that are 1 unit edit-distance away from “ake”). Unless the context in which this sentence appears is
known, it is hard even for a human to figure out the original word for the typo. Note that some of the alternative
words in this list are 2 units edit distance away from the original word “cake”. Eventually the adversary is likely
to end up choosing a replacement word for the typo, which is further away in terms of edit distance from the
original word.

Typos whose correction processes are hard to automate are preferred in robust information embedding. Their
correction lists contain several words that have same part of speech and have similar meaning as the original
word.

Using the same example as above: an embedding system based on the CAT principle will prefer to use the
typo “ake” to the typo “cakw” in the sentence “Don’t forget to bring the cake”. There are two reasons for this: i)
“cakw” has a smaller correction list (ispell version 3.1.18 lists “cake, caw” as alternative corrections for “cakw”)
ii) while words “ale”, “sake” (from correction list of “ake”) have a similar meaning with “cake” and can be used
in the same context, it is unlikely that “caw” (from correction list of “cakw”) could be used in this sentence

instead of “cake”.

Furthermore, CATs can be used to achieve stealthiness of typos, besides achieving resilience. We do this
by choosing typos that are themselves legal words from the vocabulary (English vocabulary in this case). This
deliberate choice for typos forces the adversary to perform the complex task of detecting such typo words that
are used in the wrong context.

The sentence “It’s going to be a great party” can be changed to “It’s going to be a great patty” by the typo
injection mechanism. Since the typo “patty” is also a vocabulary word, a spelling checker will not detect this
typo. The adversary does not know which word(s) in this sentence is not from the original sentence. Hence,
from the point of view of the adversary, the original sentence is only one of a long list of possible sentences that
could have been used to create this watermarked sentence. In order to remove the watermark, the adversary
will need to first come up with this long list of sentences (which is expected to include the original sentence
before watermarking). Then the adversary will need to make a best guess among these sentences to select the
original sentence. This last step of the adversary is similar to the hypothesis ranking problem of automated
speech recognition and machine translation.” It is known that automated solutions to this problem perform well
most of the time in practice. However, in this case, as an important difference from the average case behavior
of natural language text or speech, the watermarking process will deliberately choose the typos which will make
sure the automated ranking process will perform at its worst. In order to foil the automated adversary, the
watermarking system is designed to pick the vocabulary words that create the maximum ambiguity (i.e., longest
list of alternative corrections with similar probability).

3. WATERMARKING WITH TYPOS

Without loss of generality, we will describe the method assuming one bit is embedded per word. For now we
assume that there are no untouchable word occurrences in the text (words that the user forbids to be modified
in the encoding process). At the end of this section we generalize the scheme to work for untouchable words as
well.

Let V' be the vocabulary from which the words in the cover text D are picked. Let K be the shared secret
key. Let M be the secret message.

Embedding Algorithm

1. Replace V by another vocabulary V' obtained from V by merging all words, their synonyms and their
possible typos (that are not a word from V') into groups, where each group is represented by one (key-
selected) word in V’. The representative word that corresponds to w is denoted by G(w) and it is same
for all words in a group. For example, {aircraft, airplane, airliner, jetliner, aeroplane, ..., airpane, arplane,
airplan, aiplane, ..., aircaft, arcraft, aircrft, aicraft, ..., etc. } are grouped together and only one of them
(say, airplane) is chosen as the group’s representative. If a word is eligible to appear in multiple groups
then ties are broken arbitrarily using the key K to flip a coin.

2. A word token w in D, is denoted by a pair (w,s), if this corresponds to the sth instance of the group
represented by G(w) in D.

3. (w, s) is used for information carrying only if the least significant bit of Hx (G(w)||s) is 1, where H g denotes
a keyed cryptographic hash with K as key, and || denotes concatenation. We make sure that any word from
the same group will encode the same bit at a given sequence order (by always using the representative of
the group to compute the keyed hash). If the adversary uses synonym substitution, the bit value encoded
by the word can still be successfully recovered since all synonyms carry the same bit value. If the adversary
chooses to inject non-word typos, it is highly likely that the replacement string will be in the same group
as the original word. Otherwise there is a 50% chance to flip the encoded bit value.

4. Process each bit m; in the message M in the following way:

(a) Scan through the document and find the leftmost information carrying (w, s) in D that has not yet
been processed.

(b) Use the second least significant bit of Hx (G(w)l||s) to determine the message bit value carried by
(w, s). w already carries m; with 50% probability; in this case we are done and we move on to embed
the next message bit m;1.

(¢) If w does not carry m;, then we try injecting different typos into w and collect, in a set of candidates
C, the following two types of outcomes for these typo-injections: (i) the resulting typo word w is such
that the least significant bit of Hx (G(w)]|5) is 0; (ii) the resulting typo word @ is such that the least
significant bit of Hx (G(w)||5) is 1 but its second least significant bit matches m;. A central technical
issue is: Which of the candidates in C to select? This is tackled separately in the Candidate Selection
algorithm given below. For now we note that if a type (i) candidate is selected, w is not used to carry
any message bits, and in such a case we skip to next information carrying word to encode m;. If on
the other hand, a type (ii) candidate is selected then it corresponds to using w to carry the message
bit m;, and in such a case we continue to embed ;1.

The next algorithm explains how we select from candidate set C the best alternative.

Candidate Selection Algorithm

1. Partition the typos, that were used to produce the candidate words, into 2 classes: Conspicuous typos, and
stealthy typos. A candidate word @ that is not in the dictionary (such as “imlipcit” instead of “implicit”)
is considered to be conspicuous. Respectively, a candidate that is in the dictionary (such as “mat” instead
of “man”) is considered to be stealthy.

Note that, some of the conspicuous typos of a word are already in the group of the word, and do not change
the encoded bit if they are used; the previous steps of the algorithm does not include such words in the
list of candidates. The conspicuous typos that are considered at this step come from other groups; they
were assigned to another group as a result of a random coin flip when they were eligible for more than one

group.

2. If there are candidates in C whose typo is of the stealthy kind, then we prune C by removing from it all the
candidates whose typo is of the conspicuous kind. Note that the remaining candidates in C are all stealthy
or all conspicuous. In either case, the next step uses the same criteria for selecting the best candidate.

3. For each candidate typo @ in C, compute the following function h(w) for it.

(a) Let N(w) be the set of neighbors of w: Word a is in N(w) if the edit distance from a to @ is no
more than a user set threshold, let’s say 2. Intuitively, a is in N (@) if @ could have resulted from
a mis-typing of a. In fact the probability of occurrence of such a typo, the conditional probability
Pr(a|w), is obtained from confusion matrices that quantify the probabilities of various mis-typings.*
Assume this has been done for all ¢ € N(w). Note that the user set threshold can also be given for
the Pr(a|w), the probability of @ being the result of a typo in a.

(b) Having obtained Pr(a|w) for all a € N(w), we compute h(w) as follows:

h(w)=— Y Pr(alw)logPr(alw)
a€N (w)

which is the entropy that we should seek to maximize (thereby maximizing the adversary’s uncertainty
about where @ could have come from). Note that, here we have assumed that the adversary will
only use the knowledge about typo confusion matrices. A more advanced adversary could use n-
gram language models, and in that case ambiguity measure of the watermarking algorithm should be
changed accordingly.

4. Select from C the candidate w with the largest h(w).

Typos are injected in a way that maximizes the possible correction alternatives, while staying within a
distortion threshold that captures the damage incurred on the cover document after the injection. The distortion
threshold is defined by the owner of the document. Viable typos are generated with respect to the confusion
matrices used by the spelling checkers, which yields all typos of the cover word that could be typed by a human
user. See the next subsection for other objective functions that can be used in watermark embedding.

The decoding is a simple key-based reading of the bit values of the (also key-selected) words in the water-
marked text.

We note that extending our system so it can handle 3-letter acronyms such as “lol” would require checking
(by pattern matching) whether the current word and its 2 successors (predecessors are not used, since they
might have been already used for encoding) can form a 3-letter acronym: If so then replacement by the acronym
provides one of the alternative “typos” that we could use.

Extending the above system to include the conversion of non-latin characters into latin characters is straight-
forward, since such conversions can be treated as typos.

In this method, every typo gives away some information to the adversary about encoding words (i.e., they
indicate that one of the dictionary words listed by the spell checker in the correction list is an encoding word).
The adversary can use this list to flip some of the message bits by injecting typos into occurrences of all the
words in the correction list. We can prevent this damage by inserting unnecessary typos into the watermarked
document. This measure also helps to increase the amount of distortion incurred on the document by the
watermarking process, hence limiting the error tolerance of the adversary.

Candidate Selection Heuristics

The heuristic introduced in step 3.b of the Candidate Selection Algorithm maximizes the possible correction
alternatives for encoding words. This increases the uncertainty about the original versions of encoding words,
and make it harder for the adversary to revert the watermarked text back into original form.

We can alternatively use another heuristic to maximize the probability that the encoded bit will stay the
same even if the adversary chooses to randomly replace the encoding word:

For all the candidate words that are encoding the desired bit m;, pick the information carrying neighbors of
@ that encode m; and put them into set N'(w), then compute Pr(m;|w) as follows:

Pr(m|w) = »_ Pr(alw)

a€EN'(w)

Then pick the candidate word that maximizes Pr(m;|@w). Here we seek to maximize the probability that
adversary will pick a word that is still encoding m; even though s/he replaces w with a word from its neighbors
N(w).

Extension to Untouchable Words

One of the disadvantages of information hiding in text is the low bandwidth of the medium. Since the document
units (e.g., words, phrases, etc.) that carry the embedded bits is scarce, every available unit is used for message
carrying. Cursory text tolerates such saturation of the text with modifications for most of the time. However,
it is not uncommon to have parts of the text which are too sensitive and modifications to the original are not
tolerable (such as a date, a salary figure, a military rank). It is important that information hiding systems have
a way of accommodating “untouchable document areas” by avoiding modifications to such portions.

It is possible to avoid untouchable areas if “untouchable words” are known beforehand, by skipping the
individual words or the phrases and sentences that they occur. However this is not a practical approach for a
general purpose information hiding system.

Untouchable words are like the “defective memory cells” in Wet-Paper Codes (WPC), and hence efficient
wet-paper codes can be used to handle them® for text steganography, see Section 4 for more details.

In our algorithm, “untouchable words” are problematic only if the word is used to carry the watermark
(i.e., least significant bit of Hx (G(w)||s) is 1). An alternative encoding could easily solve this problem when
untouchable words are rare and isolated (as opposed to occurring in chunks of text): Encode a message bit m;
(i.e., the bit value carried by jth information carrying word w; in D) as the XOR of the third least significant
bit of Hx (G(w;—1)||sj—1) with the second least significant bit of Hx (G(wj)||s;).

This may entail having to backtrack and modify w;_; for the sake of encoding bit m; in w; while still satisfying
the old requirement imposed on w;_1 by its encoding of m;_1 or of the (non)information carrying property of
w;—1. The drawback of this approach is that it will cause a substantial decrease in the number of candidates in
C for wj_; (approximately by a factor of two), and hence a lower conditional entropy for the chosen candidate
from that C. Of course no such burden is imposed on w;_; if w; is not untouchable. Note that the bandwidth
is also largely unchanged — it does not go down by a factor of 2 because, when we get to m;, we do not need
to backtrack to m;_1 because the 3rd bit of Hx (G(wj—_1), sj—1) is already fixed by then and its presence in the
XOR makes no difference to the success (or lack thereof) of encoding m; in w;. Also note that the bandwidth
would have dropped by a factor of 2 if we had used the second bit of Hx (G(wj—1),sj—1) in the XOR.

See Section 5 for an example.

4. STEGANOGRAPHY WITH TYPOS

In steganography, stealthiness of the marked document is a more important concern than the robustness of
embedding against modifications by an adversary or the value of the cover document. Here the adversary is
passive and only interested in detecting the covert communication.

We use the same notation that the watermarking algorithm uses in Section 3: V is the vocabulary from which
the words in the cover text D are picked; K is the shared secret key; M is the secret message.

Let T be the user defined total distortion threshold. We define distortion, d() to be the probability of a
typo word, w, occurring in a text as a result of a typing error made by a human typist that intended to write
the original word, w. Hence d(w,w) = Pr(w) Pr(w|w). We use the spelling error probability metric defined by
Kernighan et al. in.* See Section 6 for more details on this spelling error correction method. The steganography
process ensures that), d(w,w) stays below T'. Note that this distortion measure assumes an adversary would

know the original word w, and use this information to detect a steganography. Hence the adversary model of
the steganography system we describe in this section is more sophisticated than an automated system.

We propose a steganography system that has the flexibility to let the user forbid some of the words from
being modified. Such words are considered “untouchable” and the marking process finds a way to encode the
secret message without touching these words in the cover text. This way, users may i) conserve the value of the
cover document from being destroyed by the embedding process, ii) achieve stealthiness to the human eye, which
would not tolerate extensive typing errors at critical words. Usually, preserving the value of the cover document
is not a primary concern in steganography. However, there might be automated and manual filtering systems
that have been installed to remove the documents that do not serve the purpose of the communication channel
(e.g., spam filters, or a collaborative filtering system in a forum in which other users vote to remove posts with
no relevant information).

Our steganography algorithm uses efficient Wet-Paper Codes (WPC) technique presented in® to achieve
minimum distortion while allowing the user to mark certain sections of the cover text as untouchable. These
untouchable sections will act as “defective memory cells” in WPC.

Let L denote the sections that are untouchable.

Embedding Algorithm

1. Replace V by another vocabulary V'’ obtained from V by merging all words and their possible typos into
groups, where each group has a (key-selected) representative word for that group. For example, {word,
owrd, wrod, wodr ...etc. } would be grouped together and only one of them is chosen as the group’s
representative. The representative word that corresponds to w is denoted by G(w) and it is same for all
words in a group. If a word is eligible to appear in multiple groups then ties are broken arbitrarily using
the key K to flip a coin.

2. A word token w in D, is denoted by a pair (w,s), if this corresponds to the sth instance of the group
represented by G(w) in D.

3. (w,s) is used for information carrying only if the least significant bit of Hx(G(w)]||s) is 1, where Hg
denotes a keyed cryptographic hash with K as key, and || denotes concatenation.

4. Read the bit string that D carries (before the message embedding) into the string B as follows:

(a) For each information carrying word w in D, assign the second least significant bit of Hg (wl|s) to b;
in B. (Note that the word w is directly included in the hash in this case.)

5. Use the efficient wet-paper code technique® to generate a set of bit strings, B, that can encode M without
using the bits that fall into the sections marked by L and whose hamming distance to B is below a threshold
(this threshold is set a priori).

6. For each B’ € B use the embedding transformations defined in the watermarking algorithm in Section 3 to
embed B’ into D and get the marked text D’. The only difference here is the candidate selection criteria:
while picking a typo from the possible candidates in the set C, we pick the candidate, w, that is the most
probable typo (i.e. @ = arg max Pr(w|w)) in the list of typos that can encode the desired bit, m;.

7. Pick the B’ that inflicts minimum total distortion on D, and output the corresponding stego text, D’ that
carries B'.

The decoding process is similar to watermark reading, where the bits encoded by the key-selected words in
the stego text is read using the keyed hash.

See Section 5 for an example.

5. EXPERIMENTS: MAKING OF MARKERR

The current implementation of MarkErr has two main characterizing inputs: i) the vocabulary of words ii)
distortion measure. The vocabulary determines which words are eligible to be considered for message carrying.
The vocabulary also determines the words that can be used as replacement words by the watermarking algorithm.
The user can limit the choice of words that can be injected to the cover document (i.e., by removing such words
from the vocabulary if they are inappropriate). We used the master English word list of Aspell Version 0.50.5
as the vocabulary in our implementation.

We use two different distortion measures to quantify the cost of a unit transformation of the cover text for
watermarking and steganography. The distortion measure of steganography is based on a model of typos that
have been extracted from AP newswire text in 1988.% It is —log(P(t|w)), logarithm of the probability of a
particular error given the correct word. A stego embedding with a lower cost should be similar to a human-made
typo, hence be less detectable by an adversary.

The watermarking distortion measure should quantify the distortion of the value of the text for human
readers. Even though we cannot perfectly capture this as a number, we believe that the similarity of the
alternative corrections of a typo may capture the confusion of the readers when faced with a typo and hence
approximate the degradation in the value of the cover text. The entropy, h(w@) in step 3.b of the Candidate
Selection Algorithm in Section 3 quantifies this confusion of the user. In this implementation, we did not use
context information when computing the entropy of the correction word (i.e., an injection of hat to replace that
is less confusing than when hat is used to replace cat). A more sophisticated implementation should use side
information (e.g., language models, word clusters, part of speech, etc.) to determine words which are commonly
used in similar contexts and can be accidentally typed in place of each other.

Following example shows a watermarked version of the first three sentences of the abstract of this paper. We
embedded 16 bits into this text. Note that the embedding transformations were performed by using “stealthy”
typos where the mark carrying word is a vocabulary word. (Changed words are shown in bold font.):

A substantial portion of the text available online is of a kind that tends to contain mane
typos and ungrammatical abbreviations, e.g., emails, blogs, forums. It is therefore not
surprising chat, in suck tests, one can tarry out information-hiding by the judicious
injection of tyros. The resilience is achieved through the use of computationally
asymmetric transformations (CAT for short): Transformations that can be married out
inexpensively, yet reversing them requires much mere extensive semantic analyses (easy

for humans to carry out, but hark to automate).

In our implementation for steganography we used the conspicuous typos as embedding transformations.
These typos are generated by applying letter changes to the original words in the cover text which usually yield
non-vocabulary tokens in the marked text. Even though these transformations can easily be detected by the
adversary, they still have the CAT property as the adversary has to find out the original correct wording of
the typographical error among many viable alternatives in order to revert the transformation. For instance a
deletion transformation of “change” into “chage” will force the adversary to choose one of “achage, cage, chafe,
Chaga, Chane, change, chape, chare, charge, chase, cha ge, cha-ge, phage” to revert the typo. An example of
this embedding is shown below:

A substantial potion of the text available onlne is of a kind that tends to conain many
typos and ungrammatical abbreviations, e.g., emals, blgs, forums. It is therefore not sur-
prisng that, in sich texts, one can carrsy out infomation-hiding by the judicious injection
of tpyos. The resilience is achieved through the use of computationally asymmetric
transformations (CAT for hsort): Transformations that can be carried out inexpensively,

yet reversing them requirs much more extensive semantic analsyes (esasy for humas to carrsy
out, but harsd to uatomate).

The original text is the same as the watermarking example (first three sentences of the abstract) and again
we embedded 16 bits into this text.

6. RELATED WORK

In her 1995 book,” Turkle published the results of her analysis on the behavior of users in a multi-user game
(e.g. Multi-User Dungeon (MUD)) that allows players to chat. She states that onomatopoeic expletives and a
relaxed attitude toward sentence fragments and typographic errors suggest that the new writing is somewhere
between traditional written and oral communication. This type of language used online is commonly referred as
“NetSpeak”.!® While Turkle’s focus is mainly on the psychological effects of the Internet environment, Crystal’s
work focuses on analyzing the evolution of the language used in chatgroups, emails, and text messages send
over mobile phones.'!»'2 Crystal mentions that due to the 160 character limitation in text messages, users
tend to shorten many words, and these acronyms or abbreviations stick in a community. Crystal also discusses
the ambiguity in NetSpeak in his article.'? He mentions that there is a two way ambiguity in this language,
one way is while interpreting what an acronym stands for, for example “N” can mean “no” and “and”, “Y”
can mean “why” or “yes”. It is up to the receiver to decode a sender’s message when it involves an ambiguous
acronym, “GBH” can mean “great big hug” or “grievous bodily harm”. The other way of ambiguity occurs when
shortening a term, for example, “good to see you” can be “GTCY”, “GTSY”, “G2CY” or “G2SY”, and “thanks”
can be “THNX”, “THX”, “TX” or “I'NX”. Even though usage of acronyms are two-way ambiguous, embedding
information through them forms CAT type of a transformation, where computational complexity of forming an
acronym out of a word or a phrase is much more lower than disambiguating the meaning of an acronym.

The studies in spelling error detection and correction research have focused on three problems” 3:

e Non-word Error Detection This problem involves finding out whether a word is not in a given dictionary.
Several efficient pattern matching and n-gram analysis techniques have been proposed for solving this
problem, which requires correctly parsing a given word into its stem and its suffix; a fast search capability
and a well-designed dictionary. The Unix ®spell program is one of the commonly used non-word error
detection tools.

e Isolated-Word Error Correction Analysis of word typing errors occurring in several applications such
as newswire text, search engine queries or optical character recognition data has shown that error rate and
error type (e.g. single or multiple character errors) varies from application to application. There have been
several techniques designed for detecting and proposing corrections for a misspelled word, such as minimum
edit distance technique, rule-based techniques, n-gram based techniques, or probabilistic techniques—such
as the one we have used in our experiments.® All of these techniques have proven to be successful in a
given domain, but an isolated word error correction technique that works efficiently for any given domain
has not yet been introduced.

e Context-Dependent Word Correction This problem involves dealing with errors where an actual word
is substituted for another actual word. This can happen in many forms: due to typos (e.g typing “form”
instead of “farm”, “lave” instead of “leave”); due to cognitive or phonetic mistakes (e.g. “there” instead
of “their”, or “ingenuous” instead of “ingenious” or typing “f” instead of “ph”); due to use of wrong
function word (e.g. “of” instead of “on”); due to improper spacing (e.g. “my self” instead of “myself”);
due to insertion or deletion of whole words (e.g. “I cut myself when while cooking.”); due to grammar
errors (e.g. “he come” instead of “he comes”) etc. Devising a solution for correcting this type of errors
requires strong natural language processing capabilities including the challenging topics of robust natural
language parsing, semantic understanding, pragmatic modeling and discourse structure modeling. Only
a few spell correction tools attempted to perform context-dependent word correction, and so far none of
them have been successful in solving this problem beyond a domain dependent setting that allows only a
very restricted type of errors (e.g. at most one misspelled word per sentence, each misspelling is the result
of a single point change, and the relative number of errors in the text is known).!4

As also mentioned in Section 5, while implementing MarkErr, we used the probabilistic spelling correction
technique introduced by Kernighan et al.* This technique uses a Bayesian argument that one can often recover
the intended correction, ¢, from a typo, ¢, by finding the correction that maximizes Pr(c) Pr(t|c). Pr(c) is the
word probability learned from a corpus by using the frequency count of a word, and Pr(¢|c) is a model of the

noisy channel that accounts for spelling transformations on letter sequences (i.e. insertion, deletion, substitution
and reversal). There is one confusion matrix for each spelling transformation. This confusion matrix shows the
probabilities of the transformation occurring between the two letters such as count(sub(tp, ¢p))/count(chars(cp))
shows the probability of a character ¢, being substituted by ¢,. The matrix for Pr(¢|c) is computed using the
four confusion matrices computed for each spelling transformation. Kernighan et al. used Associated Press
Newswire corpus for training these probability models. Given the typo word “acress”, this spelling correction
method (when trained on AP newswire corpus) produces the following list where the correction words are sorted
according to their scores: {acres (0.45), actress (0.37), across (0.18), access (0.00), caress (0.00), cress (0.00)}.
Confusion matrices for all four spelling transformations are provided in.*

Besides the above mentioned challenges spelling correction for cursory text — similar to spelling correction
for search engine queries' — has unique challenges such as maintaining a dynamic dictionary which should be
updated to include terms emerging in daily life: acronyms (e.g. “asap”, “lol”), emoticons (e.g.”:-D”), new terms
(e.g “blogging”, “googling”, “phishing”, “pwned”), uncommon person names (e.g. “Suri”, “Shiloh”), newly
generated words for marketing purposes (e.g. a recent movie directed by Gabriele Muccino is titled “The Pursuit
of Happyness”, one of the popular songs performed by Avril Lavigne is titled “Sk8er Boi”). Such requirements
make devising a highly accurate spelling correction tool for cursory text very hard.

Most of the studies in information hiding into natural language text is based on re-writing the cover document
using linguistic transformations such as synonym substitution,'® 6 or paraphrasing."’? T-Lex is one of the
first implemented systems that embed hidden information by synonym substitution on a cover document.® 17
T-Lex first generates a database of synonyms by picking the words that appear only in the same set of synonym
sets from WordNet. The intersections between distinct synonym sets are eliminated to avoid usage of ambiguous
words for encoding. This filtering causes the use of uncommon words (e.g. replacing “nothing” with “nada”)
due to the fact that common words tend to span through several unrelated synonym sets and this property can
easily be exploited by steganalysis techniques that use language modeling such as the one introduced in.'®

In,'” Bergmair provides a survey of linguistic steganography. He also discusses the need for an accurate
word sense disambiguator for a fully automated synonym substitution based steganography, where sense dis-
ambiguation is required both at decoding and encoding time. The lack of accurate disambiguation forces the
synonym substitution based information hiding systems to restrict their dictionaries to a subset of words with
certain features. Besides decreasing the communication bandwidth, such restrictions cause the systems to favor
use of rare words for encoding information.!8

In another work, Bergmair et al. proposes a Human Interactive Proof system which exploits the fact that
even though machines can not disambiguate senses of words, humans can do disambiguation highly accurately.'?

Topkara et al. have recently designed a lexical watermarking technique® and build it into a system, Equimark,
that achieves good embedding and resilience properties through synonym substitutions. When there are many
alternatives to carry out a substitution on a word (that was selected as a message carrier), Equimark prioritizes
these alternatives according to their ambiguity, and uses them in that order. Besides having this one-wayness
feature, Equimark allows the owner of the document to set a distortion threshold. Embedding process stays
within this threshold, while maximizing the expected distortion that has to be applied by an adversary that is
trying to remove the embedding. Equimark uses a weighted undirected graph of (word, sense) pairs, where an
edge between two nodes represents that they are synonyms and the weights on the edges are assigned according
to the similarity between two adjoining words .

7. CONCLUSIONS

We have presented a robust information hiding system that is based on the clever use of idiosyncrasies (such as
typing errors, use of abbreviations, and acronyms) that are common to cursory text (e.g, e-mails, blogs, forums).

We use computationally asymmetric transformations (CAT), that are computationally inexpensive to perform
but hard to revert back (without disproportionately larger computational resources, or human intervention), such
as replacing a word with a typo that has a long list of equally possible corrections.

We have designed and implemented two different systems, one for watermarking (robust against an active
adversary) and one for steganography (stealthy against a passive adversary).

The language of cursory text is evolving, and getting richer by new acronyms (e.g, “lol”) or new words

(e.g., “phishing”) added daily to the language by repeated usage in many online communities. There is much
room for improvement in information hiding in cursory text. Typing error is only one type of idiosyncrasy that
opens room for information hiding in cursory text, and new opportunities develop as the language develops.

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

REFERENCES

. M. Atallah, V. Raskin, C. F. Hempelmann, M. Karahan, R. Sion, U. Topkara, and K. E. Triezenberg, “Nat-
ural language watermarking and tamperproofing,” Proceedings of the Fifth Information Hiding Workshop,
vol. LNCS 2578, 7-9 October 2002, Noordwijkerhout, The Netherlands.

M. Topkara, U. Topkara, and M. J. Atallah, “Words are not enough: Sentence level natural language
watermarking,” Proceedings of ACM Workshop on Content Protection and Security (in conjuction with
ACM Multimedia), October 27, 2006, Santa Barbara, CA.

G. Tur, “Turkish text de-asciifier,” http://www.hlst.sabanciuniv.edu/TL/deascii.html, 1998.

M. D. Kernighan, K. W. Church, and W. A. Gale, “A spelling correction program based on a noisy chan-
nel model,” Proceedings of the 13th conference on Computational linguistics, 1990, Morristown, NJ, USA,
Association for Computational Linguistics, pp. 205-210.

L. Philips, “Hanging on the metaphone,” Computer Language Magazine, vol. 7, no. 12, pp. 39-44, 1990.

. U. Topkara, M. Topkara, and M. J. Atallah, “The hiding virtues of ambiguity: Quantifiably resilient wa-
termarking of natural language text through synonym substitutions,” Proceedings of ACM Multimedia and
Security Workshop, September 26-27, 2006, Geneva, Switzerland.

D. Jurafsky and J. Martin, Speech and Language Processing. Upper Saddle River, New Jersey: Prentice-Hall,
Inc, 2000.

J. Fridrich, M. Goljan, and D. Soukal, “Wet paper codes with improved embedding efficiency,” IEEE
Transactions on Information Forensics and Security, vol. 1, pp. 102-110, March 2006.

. S. Turkle, Life on the Screen: Identity in the Age of the Internet. New York: Simon and Schuster, 1995.
L. Truss, Eats, Shoots € Leaves. New York: Gotham Books, 2004.

D. Crystal, Language and the Internet. Cambridge CUP, 2001.

D. Crystal, “Txt, nyl?,” In Susan Tresman and Ann Cooke (eds), The Dyslexia Handbook, 2006, British
Dyslexia Association, pp. 179-183.

K. Kukich, “Technique for automatically correcting words in text,” ACM Computing Surveys, vol. 24, no. 4,
pp. 377-439, 1992.

S. Cucerzan and E. Brill, “Spelling correction as an iterative process that exploits the collective knowledge
of web users,” Proceedings of EMNLP 2004, 2004, pp. 293-300.

K. Winstein, “Lexical steganography through adaptive modulation of the word choice hash,”
http://www.imsa.edu/ keithw/tlex/, 1998.

M. Atallah, C. McDonough, S. Nirenburg, and V. Raskin, “Natural Language Processing for Information
Assurance and Security: An Overview and Implementations,” Proceedings 9th ACM/SIGSAC New Security
Paradigms Workshop, September, 2000, Cork, Ireland, pp. 51-65.

R. Bergmair, “Towards linguistic steganography: A systematic investigation of approaches, systems, and
issues.,” tech. rep., University of Derby, November, 2004.

C. M. Taskiran, U. Topkara, M. Topkara, and E. Delp, “Attacks on lexical natural language steganography
systems,” Proceedings of the SPIE International Conference on Security, Steganography, and Watermarking
of Multimedia Contents, 2006.

R. Bergmair and S. Katzenbeisser, “Towards human interactive proofs in the text-domain,” Proceedings of
the 7th Information Security Conference, vol. 3225, September, 2004, Springer Verlag, pp. 257-267.

