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ABSTRACT

PREFIX-SUFFIX BASED STATISTICAL LANGUAGE
MODELS OF TURKISH

Umut Topkara
M.S. in Computer Engineering
Supervisor: Asst. Prof. Dr. Ilyas Cicekli
July, 2001

As large amount of online text became available, concisely representing quan-
titative information about language and doing inference on this information for
natural language applications have become an attractive research area. Statisti-
cal language models try to estimate the unknown probability distribution P(u)
that is assumed to have produced large text corpora of linguistic units u. This
probability distribution estimate is used to improve the performance of many
natural language processing applications including speech recognition (ASR), op-
tical character recognition (OCR), spelling and grammar correction, machine
translation and document classification. Statistical language modeling has been
successfully applied to English. However, this good performance of approaches to
statistical modeling of English does not apply to Turkish. Turkish has a produc-
tive agglutinative morphology, that is, it’s possible to derive thousands of word
forms from a given root word through adding suffixes. When statistical modeling
by word units is used, this lucrative vocabulary structure causes data sparseness
problems in general and serious space problems in time-memory critical applica-

tions such as speech recognition.

According to a recent Ph.D. thesis by Hakkani-Tiir, using fixed size prefix and
suffix parts of words for statistical modeling of Turkish performs better than using
whole words for the task of selecting the most likely sequence of words from a list
of candidate words emitted by a speech recognizer. After these successful results,
we have made further research on using smaller units for statistical modeling of
Turkish. We have used fixed number of syllables for prefix and suffix parts. In
our experiments we have used small vocabulary of prefixes and suffixes to test the
robustness of our approach. We also compared the performance of prefix-suffix
language models having 2-word context with word 2-gram models. We have found

a language model that uses subword units and can perform as well as a large word
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based language model in 2-word context and still be half in size.

Keywords: Statistical Language Modeling, Natural Language Processing, Agglu-
tinative Languages, Speech Recognition, N-best List Rescoring, n-gram Language

Models, Prefix Suffix Language Models.



OZET

TURKCE'NIN ONEK-SONEK TABANLI
[STATISTIKSEL MODELLERI

Umut Topkara
Bilgisayar Mithendisligi, Yiiksek Lisans
Tez Yoneticisi: Yard. Doc¢. Dr. Ilyas Cicekli
Temmuz, 2001

Teknolojik gelismelerle beraber biiyiik derlemlerin ortaya ¢ikmasindan sonra
dil hakkindaki nicel bilgilerin 6zlii bir halde saklanmasi ve bu bilgi iizerinde
¢ikarimlar yapilmasi ¢ekici bir bilimsel aragtirma alani haline geldi. Istatistik-
sel dil modelleri u dil birimlerinden olusan biiyiik derlemleri iirettigi varsayilan
ve bilinmeyen bir p(u) olasiik dagilimm tahmin etmekte kullamlirlar. Bulu-
nan bu olasilik dagilimi tahmini , aralarinda konugma tanima(speech recogni-
tion), yazim ve gramer hatalarmi diizeltme, otomatik belge terciimesi ve otomatik
belge smmiflandirmanin da bulundugu bircok dogal dil isleme uygulamasinin
bagsarimini artirmak icin kullanilabilir. Istatistiksel dil modelleme, ingilizce’ye
basariyla uygulanmistir, ancak istatistiksel modellerin bu basaris1 Tirkce'nin is-
tatistiksel modellerine Tirkge'nin belirli ozelliklerinden dolay1 yeterince yansima-
maktadir. Tirkee tiretken sondan eklemeli bir dil yapisina sahiptir, yani bir ke-
lime kokiinden arka arkaya eklemeler yoluyla binlerce kelime tiretmek miimkiin
olmaktadir. Kelime birimleri iizerinden istatistiksel modeller kullamldiginda
Tiirkce’nin iiretken sozliikk yapisi genel olarak veri yetersizligine ve konusma
tanima gibi zaman-yer kritik uygulamalarda ciddi yer ve zaman problemleri

olusturmaktadir.

Yakin zamanda tamamlanan Hakkani-Tir’e ait doktora tezindeki bulgu-
lara gore, Tirkce icin konugma tanima uygulamalarinin trettigi aday lis-
telerinin yeniden degerlendirilmesinde, kelimelerin sabit biiyiikliikteki onek ve
sonek birimleri iizerinden yapilan n-birimli istatiksel modeller kelime birimleri
izerinden yapilan n-birimli modellere gore daha iyi basar1 saglamaktadirlar. Bu
basarili sonuglardan sonra, kelimeden kii¢iik birimler izerinden Tiirkge'nin istatis-

tiksel modelleri konusunda daha fazla arastirma yaptik. Caligmalarimizda onek
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ve sonek kisimlari icin sabit sayida hece kullanilan cesitli istatistiksel modeller
denedik. Yaklagimlarimizin giicliiliigiinii degerlendirebilmek icin onek ve sonek

dagarcigimizi kisith tuttuk.

Ayrica 2 kelime birimi baglamlh onek sonek modellerimizin bagarimini kelime
birimleri tizerinde 2-birimli istatistiksel modellerle karsilagtirdik. Aragtirmalarimizin
sonunda 2 kelime baglamda kelime tabanli dil modeliyle ayni perfor-

mansi gosteren, ancak yari boyutta olan bir dil modeli gelistirdik.

Anahtar sézcikler: Istatistiksel Dil Modelleme, Dogal Dil Isleme, Sondan Ek-
lemeli Diller, Konusma Tanima, Aday Listesi Degerlendirme, n-birimli Dil Mod-

elleri, Onek Sonek Dil Modelleri.
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Chapter 1

Introduction

One theory (Jerison, 1991) is that human language stems primarily from
a need for better cognitive maps of the territory. Canines and other so-
ctal carnivores rely heavily on scent marking and their olfactory system to
decide both where they are and what other animals have been there... But
the early hominid (monkeys and apes 30 million years ago) did not have
a well enough developed olfactory system to map out the world this way,
so they substituted vocal sounds for scent marking. Thus, the rest of this
chapter, in Jerison’s view, is devoted to the way we humans compensate
for our inadequate noses.

Stuart Russell and Peter Norvig

The Evolution of Language, Artificial Intelligence A Modern Approach[27], page 653

1.1 Overview

Statistical language modeling is the process of building an estimate for the prob-
ability distribution of natural language units, which vary from words to sentences
and documents[26]. This probability distribution estimate is used to improve the
performance of many natural language processing applications including speech
recognition (ASR), optical character recognition (OCR), spelling and grammar

correction, machine translation and document classification.

Statistical language modeling has been successfully applied to languages like

English [15]. Currently there is ongoing research to apply the existing speech
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CHAPTER 1. INTRODUCTION 2

technology to other languages like Arabic, Dutch, German, Japanese, Spanish,
Mandarin Chinese, Korean and statistical modeling of these languages is an im-
portant constituent of this effort. Although the acoustic models have been found
to be transferable[28] between languages due to the small phone repertoire of hu-
mans, this hasn’t been the case for language models. Language models of some
languages, including the Turkish language, need extra care for their special char-
acteristics. In Turkish language, a word may have different realizations in the
sentence depending on the part of speech role it plays. Thus, some preprocessing

is required to successfully apply traditional approaches to Turkish.

Experiments in a recent thesis by Hakkani-Tiir[10] have shown that statistical
language modeling by dividing a word into a fixed size prefix and a fixed size
suffix achieves competitive improvements on the language model performance for
the task of selecting the most likely sequence of words from a list of candidate
words emitted by a speech recognizer, when compared to more expensive language

modeling methods.

This thesis presents our attempts to overcome some problems of statistical lan-
guage modeling of Turkish due to its highly productive agglutinative morphology
by using prefix-suffix n-gram models. We have tested various prefix suffix mod-
els in 2 and 3-word context and one of these models can perform as good as a
word-based model but is half in size. The research in this thesis is mainly built

up on and projected from the findings of PhD thesis by Hakkani-Tiir[10].

1.2 Motivation

Turkish language has a rich agglutinative morphology, which has productive in-
flectional and derivational suffixations. The order of the constituents in Turkish
may change freely in sentences according to the discourse context. Such char-
acteristics make Turkish language more complicated to process with statistical

approaches[10, 37] when compared with languages like English, which has less
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productive morphology and fixed constituent order. The free constituent order-
ing in Turkish introduces irregularity and its rich morphology introduces a huge

number of distinct tokens as complexities to be tackled.

Morphological constituents of words have been successfully used for reducing
the out of vocabulary rate and word error rate[9, 3]. However due to inherent
ambiguity in Turkish, the existing morphological analyzer requires about 10%
of the analyzed words to be further processed by human experts[11]. Moreover
the morphological analysis step raises a computational overhead that may be
unwanted. Our research has been towards finding prefix and suffix portions of
words that will reduce the vocabulary size of a language model and at the same
time represent words’ morphological identity that is significant to preserve the

word error rate of the speech recognizer.

1.3 Layout of the Thesis

The focus of this thesis is statistical language modeling, therefore in the next
chapter we elaborate on statistical language modeling with emphasis on n-gram
language models. There is also a short review of speech recognition in this chapter.
A brief information about characteristics of the Turkish language is given in the
beginning of Chapter 3, followed by a discussion of problems with its statistical
modeling. As a solution to these problematic issues of Turkish, implications
of using various prefix-suffix language models are presented. Also in the same
chapter, application of statistical language modeling on speech recognition is
explained. After this we describe our statistical models for Turkish in detail. In
the fourth chapter results of various prefix-suffix language modeling approaches to
improve speech recognition performance is reported. Finally in the fifth chapter

we have listed our conclusions from this work.

Local Variables: mode: latex TeX-master: ”thesis” End:



Chapter 2

Statistical Language Modeling

Information theory has perhaps ballooned to an importance beyond its ac-
tual accomplishments.

Claude Elwood Shannon

To the man who only has a hammer in the toolkit, every problem looks like

a nail.
Abraham Maslow

In this chapter we introduce the notion of statistical language modeling with
emphasis on n-gram language models. After we give methods for deriving statisti-
cal language models from corpora and improving these derived language models,
we explain a powerful computational tool used for statistical learning called Hid-
den Markov Models. We conclude this chapter with a brief introduction to speech
recognition, from the viewpoint of an application domain for statistical language

models.

2.1 Statistical Language Modeling

As large amount of online text became available, concisely representing quanti-

tative information about language and doing inference on this information for
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natural language applications became an attractive research area. Statistical lan-
guage models try to estimate the unknown probability distribution p(u) that is
assumed to have generated large text corpora of linguistic units u. The estimated
distribution P(u) expresses distribution of all possible u that can ever exist in

the language.

The first successful application of statistical language modeling was for in-
tegrating language information to optical character recognition in a statistical
framework. Currently speech recognition is the most widely used application
of language models. In speech recognition, the aim is to find the sequence of
words W* that has the highest likelihood P(W|A), given an acoustic waveform
A produced by an utterance W, as in Equation 2.11. Ideally W* = W.

W* = argmax P(W|A) (2.1)
W

Since it’s not practically possible to directly compute P(W|A), Bayes’ rule
is used to decompose it to computable probabilities as in Equation 2.2. P(W)
is the probability distribution of word sequence W and P(A|W) is the acoustic
likelihood. Since P(A) is independent of W, it’s just a normalization constant to

keep the result as a legal probability and may be ignored in computation of W*.

W* = argmax PW) x P(AW)

n A (2.2)

Statistical language models(SLMs) are used to compute P(W) values in Equa-
tion 2.2. N-gram models, part of speech based models, structured models and
exponential models are some of statistical modeling techniques that are used to
find P(W)[26]. Details of various statistical language modeling techniques can

be found in books on statistical language processing[19, 15].

Almost all SLMs represent the probability of a sentence W as:

Largmax function returns the argument that maximizes the expression on its right side.
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def 50 my T
PW)= P(w}) = H P(w;|h;) (2.3)

i=1
where W = w7 is? a sentence of n words and h; = wi™* is the history of i" word.
As can be seen in Equation 2.3 the problem of computing the probability of a

sentence W is very similar to predicting the next word from previous words:
P(wi|h;)

The task of predicting the next word from its history is referred to as the
Shannon Game after his seminal paper([31] in information theory that used such

prediction experiments to present his findings.

The word prediction task is actually a classification task[19], in which clas-
sificatory features(i.e. past words) are used to predict a target feature(i.e. next
word). In order to do this prediction, we make some independence assumptions,
that is, we leave some classificatory features unconsidered; either because the
target feature does not depend on them or the dependency is minor that we
can neglect them to be able to afford computational costs. Effectively we divide
the data into certain equivalence classes that have the same values for a certain
subset of the significant classifiers, and these equivalence classes are used in the
prediction. The number of classificatory features that we take into consideration
in prediction task determines the accuracy and reliability of our predictions to
some extend. More classificatory features means a more accurate classification,
because every small effect acting on the target feature is considered. Whereas
this makes the prediction unreliable due to the empirical characteristic of the
task, which will produce less instances of the equivalence classes in the training
data. However, it is not possible to get better results indefinitely as more data is
made available. The performance reaches a limit after some point due to reasons

that will be discussed at the end of this section.

Before elaborating more on statistical language modeling techniques, we will

discuss evaluation criteria for language models in the next section. Section 2.1.2

2From now on we will use uz and u;, ui41,...,uj alternatively to denote the sequence of
units from subscript i to j
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discusses n-gram language models, followed by two variations of it: part-of-speech
based n-gram models and class based n-gram models. We continue with a sub-
section on estimating language model parameters and then discuss advantages

and disadvantages of statistical natural language modeling.

2.1.1 Performance of Statistical Language Models
2.1.1.1 Word Error Rate

As language models are just aides to NLP applications, their performance is best
measured in terms of the benefit they provide to the application’s performance.
The word error rate (WER) of the application in which a language model is inte-
grated is a metric of this kind. WER is rate of the total number of deletions, inser-
tions and substitutions found by computing the minimum edit distance between
the hypothesized sentence (hypothesis) by the recognizer and the real utterance

(reference), to the total number of words in the real utterance.

insertions + deletions + substitutions

WER = 100 x

number of words in W

However, most of the time speech recognizer programs are not readily avail-
able, and such performance measures are hard to gather, hence WER is not
appropriate for comparing the performance of different language models. For
this reason evaluation metrics that can be calculated efficiently and without the
need for a speech recognizer are most commonly used. Among these common

metrics are entropy, cross-entropy and perplexity.

In this thesis, since we had speech recognizer data available to us, we have

evaluated the quality of our models in terms of WER.
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2.1.1.2 Entropy

Entropy is the amount of information® that is captured in a random variable
measured in bits. It is the statistical measure of the number of bits needed to
encode a message in language L when the most efficient coding is used from the
view of communication theory [24]. For a random variable X, which varies over
the linguistic units u that our language model is trying to predict, let P(z) be the
probability distribution of X. Then the entropy H(X) of this random variable

1s:

— Y P(z)log. P(x)

rzeX
2.1.1.3 Cross-entropy

The main issue in statistical modeling is to construct a framework that captures
the underlying process and to feed this framework with training data in a way
that it gathers as much information about the underlying processes as possible.
For this reason, the likelihood of the unseen data D with respect to the language
model M is also used as a performance measure. The average log likelihood of

data D = (D, Ds, ..., D,) with respect to model M gives this quantity in bits:

AverageLogLikelihood(D|M) = Z logPy(d) (2.4)

deD

Average Log Likelihood (D|M) is an approximation to the cross entropy
H(P, Py) of true data distribution P that generated D with respect to model
distribution Py;:

H(P,Py) =—— Z P(d)log Py (d) (2.5)

dED

3The term information is used in the context of information theory.
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Cross-entropy H (P, Py) is provably greater than the real entropy of language

H(P). So it may be used as an upper bound approximation to it.

2.1.1.4 Perplexity

Most of the time perplezity is reported as a performance measure in SLM research.

perplexity(P, Py) = 2HEPm) (2.6)

The perplexity value of a language model on a data D having value k£ means
that on the average you are surprised as if you had to guess between k choices

that have the same probability.

Although perplexity is a common evaluation metric in SLM research commu-
nity, it does not directly translate to an improvement in performance of the target
application. It is even possible for models with same perplexity to have about 1%
word error rate difference[34]. It’s worth mentioning that, in [26] a 5% reduction
in perplexity is regarded as insignificant and 10%-20% reduction as sometimes

translating to increase in recognition rate.

2.1.2 n-gram Language Models
I am a bear of very little brain, and long words bother me.

Winnie-the-Pooh, A.A. Milne

In the task of predicting the next word, the history of word w,, is the classifica-
tory feature set that is used to predict target feature w,. A possible independence
assumption is to assume that the last few words determine the next word, which
is also called the Markov Assumption. A 3-gram language model assumes depen-

dence of a word only to previous two words:

P(w;lh;) = P(w;|wi—g, wi—1)
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The probability P(w;|w; o, w; 1) can be computed from:

C(wi_g, wi_1, w;
P(wi|wi_27wi—1) _ (wz 2, W; 17wz)

YW Cwig, wi_y, w)

and by setting C'(w;, ..., w,) to the frequency of word sequence wj, ..., w,. The
n-gram frequencies returned by function C(.) are derived from a training corpus
that is a representative of the actual domain which we are going to apply our

language models to.

The performance of the language models are reported as their performance
on a test corpus that hasn’t been seen before by the language models. Sometimes
another test corpus may be needed to adjust parameters before actually using

the models, such corpora are called dev-test corpora or held-out corpora.

Since sum of all 3-gram counts that start with a particular word subsequence
w;_o, w;_1 is equal to the 2-gram counts C'(w;_2, w;_1), the formula above can be

rewritten as:
C(wi—m Wi—1, wi)

P(wi|wi—2awi—1) = C(w- S0 1)

The general formula for estimating n-gram parameters uses relative frequency:

Wi—n41y -+ C(wi>

Wi—n+41y -+ C<wifl)

P(wi|wi_n+1, ceey wi_l) = (27)

This parameter estimation technique is called Maximum Likelihood Estima-
tion(MLE). Note that the probabilities calculated using Equation 2.7 maximizes
the probability of the training set it is derived from.

Because the number of parameters to be estimated will be quite large, it
is usually not practical to use more than 3-grams. There are approximately
1.773x 10'° possible 3-grams that can be constructed with a vocabulary consisting
of 260,740 different words. An English corpus of 365,893,263 words contains only
75,349,888 of these possible 3-grams, and only 8,728,789 of these 3-grams occur

more than three times in the corpus|2].

According to Zipf’s Law, the frequency f of a word type is related to rank r of

the word as f o % For this reason, in practice, only n-grams for words that occur
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over a given frequency threshold is computed. All other words are regarded as
out-of-vocabulary(OOV) items and are represented with <unk>. This strategy
does not ruin the performance of the system, but reduces the parameter space
drastically when hapax legomena , words that occurred once in training corpus,
are excluded from n-gram computations. This is due to the fact that hapax
legomena usually constitute half of the word types, but they count for only a

small portion of tokens, conforming to Zipf’s Law.

2.1.3 POS-based and Class-based Models

In this section we are going to present POS “-based and class-based Models that
are used to overcome the large parameter space size problem in language mod-
eling. As mentioned in the beginning of Section 2.1, a large number of features
makes it hard to train the parameters of a statistical language model. Assume
that Viype is the number of word types in language. In the case of n-grams, we

need to train O(V,»

type) parameters®, and even with very large corpora it is not

practical to use more than 3-gram word models. However it’s possible to replace
a classificatory feature set with another feature set that has a similar predictive
power, vet less sparse. A common practice for English is to use stemming which
will reduce the number of parameters by replacing the vocabulary of word types

with the smaller vocabulary of stems.

Another approach to the sparseness problem is to use the part of
speech(POS Jof the words for computing the posterior probability of w;[14]. Let
POS; denote the POS tag of the i*® word, then:

(wllwz n+1) = (waOS|wz n-|-1vPOSzZ 71L+1)
= (wl|wz n+1’POSzl n+1) (POS |wz n+17POSz n—|—1)

A simplification of this model might be:

P(wilwi, 1) = P(w;|POS;) P(POS;|POSZ, 1)

4POS stands for Part Of Speech that a word takes in a particular sentence.
®In fact exact value of independent variables is V™ — 1[2].
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The POS based approach reduces the parameter space complexity of the n-
gram language models drastically. An improvement over POS based language
models are class based language models. In class based language models cluster-
ing algorithms[2] that use information theoretic clues are used to find an n-to-1
function 7 that maps a word w; to a word class ¢;. A class-based language model
computes the posterior probability of w; given the succeeding string of words, for
1<1<n, as:

P(wilwy %) = P(wile;)P(eiley ) (2.8)

In class-based language models the main question is to effectively and ef-
ficiently assign classes to each individual word in the vocabulary. There are
several clustering algorithms that divide vocabularies into classes using metrics
such as mutual information[2] as described in Section 2.1.4. A large reduction
in the complexity over a word-based n-gram language model can be achieved by
using a class-based n-gram language model, while keeping the performance of
the language model at the same level. When a clustering algorithm [2] is ap-
plied on the corpus mentioned in previous section, to yield 1000 classes, among
the 1.000 x 10° possible class 3-grams only 26,913,330 actually occurred in the
corpus, and 6,917,746 of these 3-grams occurred more than three times. The
number of observed 3-grams increase by a factor of 2 in this class-based model,
moreover applying interpolated estimation to this class-based model has made a
slight improvement over the perplexity of the word-based interpolated language
model of the same corpus. In the next subsection we are going to introduce the

clustering algorithm used in this class-based model.

2.1.4 Mutual Information Maximization Based

Clustering

Brown et.al.[2] have shown that maximizing 2-gram class model parameters is

equivalent to maximizing the mutual information between consecutive classes



CHAPTER 2. STATISTICAL LANGUAGE MODELING 13

I(c;, ¢;), in a training corpus, where:

I(ci,c;) = H(ci) — H(cilcy)
= H(cj) — H(cjles)

According to Brown et.al. there is no practical algorithm that can guarantee such
clustering, but their greedy suboptimal algorithm still yields some interesting
classes. The algorithm has three main steps. In the first step word 2-gram prob-
abilities in the corpus are obtained and mutual information between each ordered
class pair is calculated from these 2-gram probabilities. After data preparation
is completed in the first step, the next two steps are iteratively applied until
C' classes remain. Each class pair is checked for the amount of decrease in the
mutual information if the pair of classes are merged, and class pair yielding min-
imum decrease is selected for merging. Then the 2-gram probabilities of classes
and mutual information among classes are updated to reflect the merge between
the classes. Each serial processing of update and search for the best merge are

done in parallel requiring O(V?) operations for each merge.

After V' — k merges, let gx(l,m) be mutual information between classes | and

m and pg(l,m) be the probability of the 2-gram (I, m). Then,

o pk(lvm)
ai(l;m) = pi(l, m)log s~ 255~y and
pr(i + 3,m) = pe(i,m) + pr(j,m), and

Qi+ j,m) = pi(i + j, m)log Zzpk(ﬁfgjfjpk(z,m> '

Let sk (i) denote the sum of the mutual information of 2-grams that contain i

as a component on any side of its associated ordered pair, then,

S; = Zl qk<la Z) + Zm qk(lvm) - qk(i'/ Z)

It is clear that, after £ merges have been done, if classes ¢ and 7 are merged
new total mutual information Iy (i, j) will be obtained by first subtracting the
sum of mutual information calculations that involve any of classes ¢ and j from

the total mutual information in that step [; and adding the mutual information
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of 2-grams with the new class ¢ + j.

Ii(i,7) = Ip — si(i) — se(F) + qe(i, ) + (4, 7)

Sa(li+ )+ > e +im) +qi+5,i+7) (29
l#1,5 m#£i,j

[1]  initialize and find first {7, j} € mazpair that maximizes Iy (4, j)
[2] for k from V toV —C

3] merge words in classes ¢, j € mazpair, 1, j, into class 4
[4] if j # k rename class k to j

[5] set Ipgr to 0

[6] for each class pair [, m, such that I < m

[7] update px_1(l,m), qx—1(l,m), Ix_1(l,m)

[8] if Tr—1(l,m) = Imaa

[9] set Lmaz to I (I, m)

[10] set mazxpair = {l,m}

[11] for each class [ # i

[12] update Ij,_1(l,4) and Ij_1(,1)

[13] update sg_1(/)

As the update operations inside the for loop, which starts on line 11, take

O(V'?) operations the total running time of the algorithm is O(V?).

2.1.5 Smoothing

"When you have eliminated the impossible, that which remains, however

improbable, must be the truth.”

Sherlock Holmes, by Sir Arthur Conan Doyle (1859-1930), British writer, physician.

Even after using feature selection methods, some word sequences among V"
possible sequences will not be observed in the training data and will be given

zero probability by our probability estimation method. Such estimation policy
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is sound for illegal word sequences. However, not all legal word sequences will
occur in the training data and these sequences will be unfairly assigned zero
probabilities, because the models will be fit to the training data. In order to
compensate for this error in probability assignment, we should apply a procedure
that will give none-zero probability to unseen events and decrease the probability

of seen events, which is called smoothing.

2.1.5.1 Good-Turing Smoothing

In Good-Turing smoothing, n-grams that have low counts are estimated from the

n-grams with higher counts. Let N, be the number of n-grams with count c:

No= Y1

W:.C(W)=c

The smoothed count ¢* for the n-grams with count c is:

E<Nc+1)

- =(c+1) E(N,)

(2.10)

where F is the expectation of a random variable[5]. In Good-Turing smoothing

E(Ny)/N of the probability mass is distributed to unseen n-grams.

However, it is not possible to know E(N.), and empirical N, might be sub-
stituted for it. Using the empirical values for expectation in formula 2.10 is
somewhat problematic. For high values of ¢, estimates will be inaccurate due
to the scarcity of such samples. In order to overcome this, one might either use
Good-Turing estimation for n-gram frequencies less than a threshold k£ or we
might fit the N, versus ¢ values to a function and use that function instead of

empirical values.

2.1.5.2 Back-off Smoothing

It is also possible to use lower order n-gram counts to estimate n-gram proba-

bilities. In back off smoothing[18] n-gram models of lower orders are recursively
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tried for a non-zero count and the n-gram count found is discounted to find Pp

and interpolated to guarantee that total probability mass does not exceed 1.

Pp(w;|wi—o, wi—1), ifC(wi—a, wi—1,w;) >0
P(wi|wi—27wi—1) = alp(wi|wi_1), sz’(wl_l,wZ) >0 (211)

as P(w;), otherwise

It’s possible to find the discounted probability Pp by using Good-Turing smooth-

ing.

Besides back-off smoothing may be used to combine probabilities from differ-

ent knowledge sources.

2.1.5.3 Deleted Interpolation

Deleted interpolation[16] is another method that combines lower order models to
estimate a better n-gram probability. In deleted interpolation all n-gram models

are linearly interpolated by weighting with A linear weights :

P<wi|wif2awi71) = )\1P<wi|wif27wifl)

A values are chosen so as to make >- \; = 1, which ensures the total probabil-
ity mass is 1. It’s also possible to choose different A values for different con-
texts, to emphasize accurate n-gram estimations. A values can be chosen both
by hand or by an algorithm called Ezpectation Mazimization (EM) to maximize
the probability assigned to a held-out corpus. A variant of EM will be discussed
in Section 2.2.2.3.
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2.1.6 Advantages and Disadvantages of Statistical Lan-
guage Models

I have a spelling checker

It came with my PC;

It plainly marks four my revue
Mistakes I cannot sea.

I've run this poem threw it,
I'm sure your pleased too no,
Its letter perfect in it’s weigh,
My checker tolled me sew.

Janet Minor

Statistical language models are known to improve the performance of their target
applications very strongly. Statistical language models are easy to train without
much human labor and models of different language phenomena may be easily
combined in a uniform framework. However, common SLM techniques have some
deficits. The most important of them is that the SLM are generally overfit to
their target domain and their performance does not transfer to other domains
although they’re hard to beat in the domains for which they’re built[26]. Also
statistical language models use little or no linguistic information, and for this
reason, after some point, their performance does not get better with increasing
size of training text. A commonly shared view of SLM is that its future lies in

incorporating linguistics to it[26].

2.2 Hidden Markov Models (HMMs)

As linguists, we find it a little hard to take seriously problems over an
alphabet of four symbols, but bioinformatics is a well-funded domain to
which you can apply your new skills in Hidden Markov Modeling!

C. Manning and H. Schiitze,

Foundations of Statistical Natural Language Processing[19], pp 338.

There are two main models that may be used to characterize the properties

of a given output, deterministic models and statiscial models. Statistical models
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try to capture the characteristics of a real world process as a parametric random
process, such that these parameters can be determined in a well defined way. This
thesis is about modeling language from the statistical perspective, and Markov

Processes and Hidden Markov Models are central to the ideas that are presented.

2.2.1 Markov Processes

Discrete Markov Models are a subclass of statistical models. Suppose we have a
system that may be at any of the states from a finite state set S = {Si, Sa, ...Sn }.
At regularly spread discrete times t = 1,2, ... the system changes state or stays
at the same state, such that ¢; is the state at time t. A Markov Model can be
viewed as a stochastic process whose output is the current state of a finite state
automaton with probabilities attached to state transition arcs. Figure 2.2.1 shows

an example for such processes.

Qoo an Q22 ass
gjls/&l\:@/\i :< %
ao1 a1 as2
Figure 2.1: A Markov Chain with four states.

In a first order discrete Markov Process (Chain) M, the following Markov
Properties hold:

e Limited Horizon: The state at time ¢ is conditionally independent on the

states at times 1,2, ...t — 2 given the state at time ¢t — 1

P(Qt = Sj|qt—1 = Si, Gt—2 = Sk, ) = P(Qt = Sj|qt—1 = Si)

e Time Invariant: The state transition probabilities are independent on time.



CHAPTER 2. STATISTICAL LANGUAGE MODELING 19

P(g: = Sjlgi—1 = Si) = a;5,1 <i,j <N

N
a; > 0,Y a;=1
=1

Since the states that the machine visits in time are observable in this process,

such processes are termed visible(observable) Markov Models.

Let 1T = {mg, 71, ...} be the initial state probabilities such that m; = P(q; =
S;). And let O = {o01,09,...,0r} be an output sequence of states, such that
observation at time ¢, o;, is the state observed at time ¢ and o, € S. Then the

probability of observing O can be easily calculated:

P(O|M) = P(o1,09,...01)
= P(o01)P(02]01)P(03|02)...P(or|0o7-1)

To1 Qo105 Q0503++-Qor_q07

N-gram language models are in fact Markov Models. A 2-gram model is a Markov
Chain where nodes correspond to words in the vocabulary and arcs carry tran-
sition probability identical to word 2-gram probabilities of the language model.
Since n-grams with n > 3 look early to the history, it may seem as if such n-
grams violate limited horizon and are not Markov Models. However it is possible
to transform an n-gram language model with n > 3 to a visible Markov model
by storing (n — 1)grams in the states. When a fixed finite amount of history m
is stored in the states of a visible Markov Model, it is called m** order Markov
Model. See Figure 2.2 for 2-gram and 3-gram models corresponding to a sublan-
guage consisting of Turkish greetings that one hears in the mornings in Bilkent.
Note that the state space of the Markov Model increases exponentially, as does
the parameter space size of language models with increasing history(or context)

size.
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0

gimaydm < /s>

gilinaydmm naber

giinaydm nasilsim

b)

Figure 2.2: State diagrams corresponding to 2-gram and 3-gram language models
of different greetings you may hear in the mornings. Only non-zero probability
arcs are shown and the probabilities on the arcs are not drawn.
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2.2.2 Hidden Markov Models

Visible Markov Models are of limited use to model real life processes. Hidden
Markov Models(HMM) are an extension to visible Markov models in which out-
puts are observed as a probabilistic function of states. This probability of ob-
serving a certain output at a certain state is called emission probability. In other
words, HMMs have two stochastic processes, one is the observed output emis-
sions and the other is the hidden state transitions. In a HMM, the observations
are statistically independent of each other and the states are correlated with the

Markov property.

In the communications literature, the terms Markov sources or probabilistic
functions of Markov sources is used instead of HMM. HMMs were first described
by Baum and his colleagues in late 1960s.

The elements of HMMs are as follows:

e Observation symbols V' = {vq,..., vy}
e Set of states S = {s1,...,5n}
e Observation sequence O = {o1,...,0r}, o €V

State sequence @ = {q1,...,qr+1}, @ €S

Initial state probabilities II = {m; : 1 <i < N}

State transition probabilities

A= {aij iy = P(Qt+1 = 5j|<]t = 81)}

Observation emission probabilities

B = {bw(k) . b”(k) = P(Ot = Uk|qt = Si;Qt-‘rl = Sj)

This type of HMM is called and arc emission HMM][19], since the outputs o; are
emitted during transition between states ¢; and ¢;.1. When the outputs o, are

emitted at state g; the model is called a state emission HMM.
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In order to specify a HMM A, we need parameters A, B and II to be defined.

A= (A, B,TI)

We can easily simulate the behavior of a HMM with the following code seg-

ment:

O G WD =

— — — — —— —

t=1

set ¢ = s; with probability 7;

while(true)
make transition from s; to s; with probability a;;
emit symbol v with probability b;;(k)
t=t+1

However such simulation is usually not interesting for our purpose in using HMMs.

There are three main problems that are of concern about HMMs given their

elements:

II.

I1I.

The

Given an observation sequence O and a model A = (A, B,II), what is

the probability that A emits O7

Given an observation sequence O and a model A = (A, B,II), what is

the state sequence () that best explains the observations?

How do we maximize the model parameters A = (A, B, 1) that max-

imizes the likelihood of observation O?7

following subsections present well-known answers to each of these

questions|25].

2.2.2.1 Finding likelihood of an observation (forward algorithm)

The

forward procedure is an efficient algorithm to compute the likelihood

of an observation sequence given a Hidden Markov Model. Let «au(i) =
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P(01,09,...,0; 1,q: = s;|\), denote the probability of being in state s; at time ¢
after observing og,...,0,_1. It’s possible to efficiently compute P(O|\) by mem-

oizing a values. The algorithm is as follows:

I. Initialization:

II. Induction:

a1(J) =D au(@aibij(o), 1<t<T,1<j<N

ITT. Termination:

It’s also possible to use the dual of the forward procedure to compute P(O|)),

i.e. by memoizing G;(i) = P(oq, ..., 01, ¢ = Si|\):

1. Initialization:

II. Induction:

Zﬁt—kl i)ajibji(o), 1<t<T,1<j<N

ITI. Termination:

O|)‘ Zﬂzﬁl

A more general form of the above formulations uses both forward and backward

variables:

P(O[\) = iat@)ﬁt(i), 1<t<T+1

2.2.2.2 Finding the best state sequence(Viterbi algorithm)

In order to find the optimal state sequence @ that maximizes P(Q, O|\), let us
define the probability of the most likely path that ends at state ¢, at time ¢, after
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observing o1, ...,0; 1:

8:(1) = max P(qi,..-,q = 8,01 ...0i_1|\)

and let 1, (i) store the most likely previous state for s; at time ¢. Viterbi algorithm
computes the best state sequence in O(|A|) time, where |A] is the number of
transitions in the automata representing the HMM, and max is a function that

returns the maximum value of the expression on its right side:

I. Initialization:

II. Induction:

01 (J) = max Gi1(Dayby(0r). 2<t<T

1<j <N

Ui(j) = argmax &y 1 (i)aiibi(0r), 2 <t <T
1<i<N

1<j<N

III. Termination:

. :
P* = nax dr41(1)

Q* = argmax o741 ()
1<i<N

2.2.2.3 Parameter estimation (Baum-Welch algorithm)

Although currently there is no algorithm to find the model parameters (A, B, )
that will maximize the likelihood of an observation sequence P(O|\), Baum and

his colleagues|1] have found an iterative procedure to find a local maxima.

Let &(i, j) denote the probability of being at state s; at time ¢t and s; at time
t+1,ie &(i,5) = Plg = Siyqe01 = sj). &(i,7) can be written in terms of
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forward and backward variables as:
L. oy (1 CllbZ [0) ]
&(i, ) = - £(4)ai;bi; (o) Ber1 (4)
Z Z a¢(7)a;;bij (o) Bev1(4)

1=1j5=1

aizbij(or)

t+1

Figure 2.3: Probability of a transition from state s; to s; at time ¢ given obser-
vation sequence O.

If we define 74(7) as the probability of being in state i before observing oy,
then:

Ye(i) = ;ﬁt(i,j)

Using v and & values, it’s possible to determine the expected number of transitions
from the given state and the expected number of transitions between a given pair

of states:
T
Z%(i) = expected number of transitions from s;, given O
t=1

T
Z&(i,j) = expected number of transitions from s; to s;, given O
t=1

If A\ = (A, B,7) is the initial model and A\ = (A, B, 7) is the new estimation,

the following stochastic constraints need to be preserved in each iteration:

N
r=1
=1
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The Baum-Welch algorithm iteratively modifies the model parameters so as to
give more probability to transitions that are taken more while observing the

training data O as follows:

m; = expected number of times ¢ = s;

= m()
expected number of transitions from s; to s;

a. .
“ expected number of transitions from s;
T
Z gt (Za ])
o=l

T

Z Ve (?)

t=1

b (08) expected number of transitions from s; to s; emitting vy
ij\Vk) =

expected number of transitions from s; to s;

; Ye(7)

[

; V(%)

2.3 Speech recognition

Speech is one of the most natural forms of communication between humans. In
the speech recognition task the aim is to find the sequence of words that were

uttered to produce an acoustic signal sequence.

Russel and Norvig|27] decompose a communication between two agents S and
H to seven episodes, where S wants to convey a proposition P to the hearer H

using words W.

e Intention: S wants H to believe P.
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Generation: S chooses words W to express P.

Synthesis: S utters words W as A.

Perception: H hears A and perceives them as w.

Analysis: H infers W means one of Py, ..., P,.

Disambiguation: H decides that S wanted to mean P; with W

e Incorporation: H decides to believe or reject P;

The first three stages intention, generation and synthesis occur at the side of agent
S, and the rest occur at H. Clearly a speech signal is used in the synthesis and
perception stages of this decomposition, and speech recognition corresponds to the
perception stage of the communication process that tries to perceive W alming
at W = W. Knowledge of language is used from perception to disambiguation
at the hearer side. Although speech communication is very natural and easy for
humans, a speech recognizer that has the capabilities of a human has not been
built yet.

Speech recognition is not the focus of this thesis so we are not going to elabo-
rate on the details of a speech recognizer more than is needed to provide the
context of the work we present in the big picture. The scientific literature
on speech recognition is fairly rich and reader is referred to them for detailed

information|[19, 17].

Speech recognition can be characterized by the various constraints put on the

task as follows[35]:

Vocabulary Size: small(2-100), medium(100-1000), large(>1000).

Speaking Style: read, spontaneous

Language Domain: task oriented, unconstrained

Speaker Dependence: speaker dependent, speaker independent
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e Channel Quality: high bandwidth, low bandwidth

e Acoustic Environment: noisy, noiseless

Regardless of the type of the recognition task, state of the art speech recognizers
work as statistical pattern recognizers[39]. The aim is to find the most likely
word sequence W in language L given the observed acoustic signal A. Recall
Equation 2.2 that decomposes the posterior probability of a word sequence to the
product of prior probability of word sequence P(W) and posterior probability
of acoustic signal given word sequence P(A|W). P(W) is found by applying
a language model as described in the previous sections. P(A|W) is found by

applying acoustic models.

Speech recognition systems works in several levels(Figure 2.4). At the signal
processing level the acoustic observation is fragmented into overlapping frames
and spectral features which possess energy information of these frames is then
generated. HMM techniques are then used for phone recognition that assign
P(0lq), likelihoods of phones o, given the observation sequence. The HMMs
used in speech recognition are state emission HMMs and each phoneme has its
own HMM which usually has 3-states. The emitted symbols from the states are
spectral feature vectors. The last stage is the decoding in which a pronunciation

dictionary and a language model are used to decide the most likely hypotheses.

There are two main approaches to the decoding problem (i.e. to find the best
W): depth-first and breadth-first. Viterbi decoding is the main algorithm that
breadth first strategies use. Since all possible hypotheses are searched in the
Viterbi decoding, less expensive variations of it are used in practice, such as beam
search which use only the highest probable words at each breadth first search level
in order to seek the words in the next level. For ranking the hypotheses at this
level, language model lookeahead|6] to lower n-gram models is used to integrate
some language knowledge to this process. Depth-first strategies are A* search

and stack decoding.

Various limitations of the Viterbi decoder prevent it from being used as is in

the decoding with complex language models. To fix these limitations a variation of
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Acoustic Waveform /\W\Nw |

Spectral Feature Vectors I I I I I I I I I I
l |

Phone Model (; (; (; (; &8%
¢3¢

Decoding P(W)
Language Model Pronunciation Dictionary

P(W]A) = arg‘glax P(W)P(A|W)

Figure 2.4: Components of a speech recognizer.

the Viterbi algorithm that finds multiple best word sequences is used[30], and then
expensive language models and acoustic models are applied on this best sequences.
These best word sequences might be output as an N-best list consisting of top n
sentence hypotheses with the highest scores or as a word lattice. The nodes in
a word lattice correspond to recognized words and directed arcs between nodes
encode a different utterance in each path from the start word to the end word. It’s
possible to encode the observation probability and the observation times to the

nodes such that P(W|A) can be computed using sophisticated language models.

The A* decoding uses a priority queue to store the substrings of the hypotheses
and iteratively finds the hypotheses that will augment the best substring using
a fast match and pushes these new substrings back to the priority queue. The
fast match is a class of efficient and effective heuristics that find possible words

matching an acoustic sequence.



Chapter 3

Prefix-Suffix Models

”To the good listener, half a word is enough.”
Spanish Proverb
”Once you’ve gotten the meaning, you can forget the words.”

Chuang Tzu (BC 369- BC 286)

In this chapter we discuss the problems of statistical modeling of Turkish. We
first start with a brief discussion of characteristics of the Turkish language with
emphasis on its morphophonemic rules. After we introduce the previous work
on modeling of Turkish, which we have built our study on, we discuss our ap-
proach. In the last section we introduce our application domain, on which we

have experimented our proposed models.

3.1 Turkish

Turkish is a free word order language with agglutinative morphology. The Turkish

language belongs to the Altaic language group.

In the Turkish language, word surface forms can be generated by adding

suffixes to the root words. The suffixation can be of two types: inflectional

30
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and derivational. Inflectional suffixation augments part of speech information
to a word, whereas derivational suffixation generates new words from the initial
word with different meaning than the initial form. The morphology of Turkish
is productive, that is, it’s possible to generate millions of words[12] from a given
Turkish root word. The morphotactics and morphophonemics of the Turkish

language have been encoded in finite state transducers by Oflazer[21].

Constituents of sentences in the Turkish language may be placed in several
positions according to discourse context. However the dominant word order is
subject object verb . Since the morphology in Turkish assigns part of speech roles
to words through inflectional suffixation, the place of these constituents in the
sentence becomes insignificant for their part of speech role. A detailed study of

the word order in Turkish has been done by Erguvanh[7].

The morphophonemic rules of Turkish[33] determine how vowels and conso-
nants change when a stem is followed by a suffix and such deformations generate
variations of morphemes called allomorphs. Allomorphs of suffixes are significant
for this study, because they increase the size of vocabulary of suffixes found in
a given corpus. We will briefly discuss some of the main morphophonemic rules

that generate allomorphs in the following subsections.

3.1.1 Vowel Harmony

Turkish has eight vowels a, e, 1, ¢, 0, 0, u, @ which are classified according to
the roundness, narrowness and place of tongue as in Table 3.1.1. According to
the vowel harmony in Turkish, vowel of the succeeding syllables assimilate to the
first vowel in frontness and roundness in a word with respect to the following

rules:

1. Vowels assimilate to the preceding vowel in frontness.
2. A narrow vowel assimilates to the preceding vowel in rounding.
3. Among wide vowels, only unrounded wide vowels can occur in non-

initial position.
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In accordance with vowel harmony several variations of suffixes become pos-
sible. (eve, ava, kola, soze) and (evi, avi, kolu, sézi) show different allomorphs

of dative suffix due to rule 1 and accusative suffix due to rule 2 respectively.

Unrounded Rounded

Wide | Narrow | Wide | Narrow
Back a 1 0 u
Front e i 0 u

Table 3.1: Vowels in the Turkish language.

3.1.2 Consonant Harmony

Consonant harmony in the Turkish language determines variations in final con-
sonant of the stems and initial consonant of suffixes in affixation depending on

the type of these consonants.

1. The voiced fricative consonants b, ¢ ,d, g do not occur as the last
letter of Turkish words, with some minor exceptions. Such voiced
consonants in loan words are transformed into their voiceless counter-
parts p, ¢, t. k, as in harp which is originally harb in Arabic.

2. In multisyllabic words and some monosyllabic words the voiceless stop
consonants p, ¢, t, k are transformed into b, ¢, d, g, ¢, as in dative
form of kitap realized as kitaba.

3. ¢, d, g occuring in beginning of suffixes transform into ¢, ¢, £ when
affixed to a word ending with a voiceless consonant p, ¢, t, k, f, h, s,
s, as in variations of locative suffix kitapta and evde.

4. When a suffix that begins with a vowel is affixed to a word that
ends with a vowel one of ¥, s, s, n is inserted before the suffix, as in
dative suffixation of kapiyr which contrasts with the dative examples

in previous section.
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Sana kalemimi getirdim. (*

Sana getirdim kalemimi. (*

Kalemimi sana getirdim.

Kalemimi getirdim sana.

Getirdim kalemimi sana.

Getirdim sana kalemimi.

Table 3.2: All word combinations of the sentence “Sana kalemimi getirdim.” (I
brought my pencil to you), with the common ones marked with asterisk.

3.2 Language Modeling for Turkish

Extensive research has been carried out for achieving successful language models
of the English language. Unfortunately, approaches to this problem do not fit
perfectly to the Turkish language and similar languages. In the Turkish language,
in contrast with the English language, constituents of a sentence might be ordered
in different ways, reflecting different discourse contexts. Since the inflectional
suffixation marks words with their part of speech role in the sentence, there is
not a need for word ordering to determine part of speech. For example all six word
combinations for sentence Sana kalemimi getirdim (I brought my pencil to you)
in Table 3.2 are meaningful Turkish sentences, although only the ones marked

with asterisk are common.

This freedom and irregularity in sentence structure cause serious complications for
statistical language models, because such models aim to capture the regularities
of languages they are applied to. For example, in order to train Turkish sentences
that are like those in Table 3.2, we need four times larger training corpus than

we would need for training similar ones in English.

Another complexity of languages like Turkish, from the viewpoint of statistical
approaches, is the rich morphology that has agglutinative nature and productive

derivational and inflectional suffixation. This lucrative morphology of Turkish is



CHAPTER 3. PREFIX-SUFFIX MODELS 34

the reason for its huge set of distinct tokens. The size of a vocabulary in a corpus
of 10M words can grow up to the order of 100,000 words in English, whereas in
Turkish, vocabulary size can reach up to the order of 470,000 for a similar size
of corpus[10]. In Figure 3.2, the rapid growth of vocabulary size in Turkish is
contrasted to that of Italian, English and Finnish on small corpora of 800000

words, each of which were collected from news sites on the web on the same date.

140000 , . | | | | ll
ltalian  +
English  x
Turkish  x
Finnish ©
120000 - |
ma
|
o
o
Bach o
- DDDDD x%**x -
e K
me oF
el X
n| o
(o] DD }{}K
N ] >K>K*¥
5 = DDD 3K .
i K
: al %
; - kX
a AT X
] ) ’
: o *
8 60000 ) g |
> . )
S X
= ¥
RIS
F K
0
DDDDxX***
40000 DDD*)@K* |
DDD§x¥*
Ty |
: ot
N : +++++++++++++++++++++++++++++
P ++++++++++++++++++
20000 DD*%X et |
e IHIIIIIIIIIIRHRIIRIIHIHHRHK
D¥¥+++++ xxxxxxxxxxxxxxxxxxxxxxxxxxx
EEEH xR
T
0 gg I I 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 700000 800000

Corpus Size

Figure 3.1: Comparison of vocabulary growth rates of English, Italian, Turkish
and Finnish in news articles.

A language model that deals with Turkish also needs to deal with a huge
number of units to model. This problem is reflected not only on the run-time
complexity, but also on the accuracy of the language models, because of the
data sparseness, as described in the previous chapter. Hakkani-Tiir[10] has found
perplexity of the Turkish language as approximately ten times greater than that
of the English language(see Table 3.3). This gap between word-based statistical
complexities of Turkish and English is due to integral impact of large vocabulary

size and free constituent order of Turkish.
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Training Set Size | Perplexity
Turkish 10M words 1084.13
English 10M words 108.52

Table 3.3: The word-based perplexity values for 1M words of English and Turkish
using a trigram language model.

3.3 Related Work

In order to overcome the difficulties introduced by large number of distinct tokens,
processing the stem and suffix parts of the tokens as distinct units has produced

successful results[10, 4].

Hakkani-T1ir[10] has tried language modeling using information on inflectional
groups, morphology, and prefix-suffix models. The prefix-suffix language models
tried in that research has promising performance and this thesis reports further

research on language modeling of Turkish with the prefix-suffix model approach.

3.3.1 Language Modeling Based On Inflectional Groups

Part of speech based statistical language models make use of language syntax
for assigning a probability distribution to word sequences. The fact that data
sparseness is less severe with part of speech based models makes them attractive
to bypass problematic issues in language modeling of Turkish, because part of
speech tags usually come from a small vocabulary of tags. However, tagging
Turkish words turns out to be another problem. Languages like English might be
tagged with a finite tag set, whereas in Turkish successive inflections of a word
might possess different syntactic relationship information and a finite tagset is
an inappropriate choice to cover all combinations of inflections. As a solution
to this, Oflazer and his colleagues|23] have adapted viewing the part of speech
information of Turkish words as a cumulative of all inflections and derivations
appended to a root word. Figure 3.2 shows the morphological parse of the derived

determiner saglamlastirdigimizdaki, which contains part of speech information.
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saglam+Adj DB+Verb+Become "DB+Verb+Caus+Pos DB+Adj+PastPart+Plsg DB
+Noun+Zero+A3sg+Pnon+Loc "DB+Det

Figure 3.2: Morphological parse of the word saglamlastirdigimizdaksi

An abstraction of the complex morphological syntax of Turkish is to to view
suffixation of Turkish words as a sequence of inflectional groups (IG) separated

by derivational boundaries:

root + Infl,"DB + Inf1l,DB + ..."DB + Infl,

Figure 3.3 shows the list of IG’s in the word saglamlastirdigimizdaki.

o Adj

o Verb+Become

e Verb+Caus+Pos

e Adj+PastPart+Plsg

e Noun+Zero+A3sg+Pnon+Loc

e Det

Figure 3.3: Inflectional groups of the word saglamlastirdigimazdaki

Empirical derivations on the inflectional groups imply interesting regularities
that can be used for and exploited by statistical language modeling. Oflazer[22)]
has observed that in the majority of cases syntactic relationships only emanate
from the last IG of the dependant word and land on one of the IG’s of the word on
the right. Moreover these syntactic relationships, if considered as directed links
between nodes that represent words, do not cross, again with minor exceptions.
This spatially regular nature of syntactic relationships between inflectional groups
of words is exploited by IG-based statistical language models of Turkish, and
prefix-suffix language models are variations of this model that also exploit this
phenomenon. See Figure 3.4 for syntactic relations and part of speech roles of

words in sentence “Bu eski bahgedeki giiliin boyle biiytimesi herkesi ¢ok etkiledi.”
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Pos Subj
Obj

Det
Mod Mod Mod d
5 g N
bahge—de} [giil—iin] [béyle ] biiyii ]+ [me—si [herke—si] le—di.]

Figure 3.4: Example showing syntactic relationships of the sentence “Bu eski
bahgedeki gilin boyle biyimest herkesi ¢ok etkiledi.” represented with IG links.

In inflectional group(IG) based language modeling, just like POS-based lan-
guage modeling[13], the probability of a sequence of words and their correspond-

ing part of speech tags P(W,T) is approximated with[10]:

P(VVa T) = H P(wiati|w?‘l_17t§_1) (31)
i=1

= [ P(wilwi™, 1) x P(t;jwi ™, ¢17) (3.2)
=1

P(w;|t;) = 1, when the root and the full morphological parse is used as the tag
t; for the word w;, and the Equation 3.2 is reduced to:

n

POW.T) = [] P(6]5) (33)

i=1
The morphological parses t; for word w; are generated by the morphological
analyzer/generator developed by Oflazer [21]. After a sequence morphological
parses is selected from candidate sequences, surface forms that correspond to this

parse sequence are generated using the same morphological analyzer.

The morphological analysis and generation steps in the IG based language
modeling are extra steps that should be integrated into the language model, thus
they bring computational overhead and programming complexity to language
modeling, which might be undesirable in some cases. Moreover, a significant
fraction of Turkish words turn out to have inherent morphological ambiguity and
when the morphological analyzer encounters such words it generates all possible
parses for them. Since the morphological analyzer does not assign probabilities
to such ambiguous parses, multiple parses that belong to a word are treated
as if each have the same probability of being the real parse of that particular

occurrence of the word, which may result in poor performance[10].
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3.3.2 Prefix-Suffix Models

In order to eliminate the inconvenience of the morphological analysis and gener-
ation steps in the IG based model, Hakkani-Tiir[10] has omitted these steps and
used a fixed size of prefix and a fixed size of suffix extracted from the token, in-
stead of the real root and IG of the word. In this model, the prefix and suffix pair
of a word is treated as if they correspond to the root and last IG pair assigned to
the word by the morphological analyzer. Thus the probability of a word sequence

is approximated with:

n

PW) =TI P(By(wi)|Bp(wi™))

i=1

X P(Sy(w;)|Sg(wi ) (3.4)

where P,(w) is the initial p letters of word w, and S,(w) is the last g letters of
word w. Applying the stem-suffix model not only tries to capture the morphology
in agglutinative languages, but also decreases the number of distinct tokens to be
processed by the language model. Hakkani-T1ir has tried various values for (p, q)
pair, namely (3,2), (4,2) and (4, 3), the latter of which performs best.

3.4 New Prefix-Suffix Models

We have built a system to test various statistical prefix-suffix language models for
Turkish. The approach in our models is similar to that of POS based language
models and it takes the structure of the prefix-suffix model in Equation 3.4 as its
foundation. Our aim is to find some simple language models that could improve
over the quality of a word-based language model while being more compact when

they are applied to the Turkish language.

In our new models, the ordered pair of prefix of length p, P,(w;), and suffix

Sq(w;) of length ¢ of a word w;, S,(w;), is treated as the class of w;, i.e.:
c(w;) = (Pp(wi), Sg(wy)) (3.5)

Until the end of this section, we will omit the lengths of prefix and suffix parts
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in our formulas for the sake of simplicity, i.e. we will refer to P,(w;) and S,(w;)
as P; and S;.

The above class model transforms the probability of a word sequence W in

Equation 3.4 into:

P(W) :ﬁ P(w;| P;, S;)
T SIS (3.6)
:ﬁ P(wi| P, S;)
T P(RIPI ST x P(SIPLSIY 57)
“11 PlP.S)
T PSIPLSEY x P(RIPILS) (3.5)

Note that the equivalence of Equation 3.6, Equation 3.7 and Equa-
tion 3.8 follows from the chain rule of probability theory (i.e. P(A, B|C) =
P(A|B,C)xP(B|C)).

In order to relieve the computational complexity raised by the large number

of parameters in Equation 3.6 we make several simplifying assumptions.

Given a fixed size suffix and a fixed size prefix of a word, it is hard to compute
the posterior probability P(w;|P;, S;) accurately for every possible word w;. Find-
ing this probabilty is equivalent to predicting the middle part M; of the word that
remains between prefix and suffix. Since the inflections in Turkish are productive
there will be many alternatives to M; that can fill the position for producing many
different words. For this reason, rather than computing P(w;|P;, S;) empirically,
we assume all such posterior probabilities to be equal for each word, and take
this probability to be 1. So we have as our second simplification over word based

model (the first was using a prefix-suffix method):

P(w;|lwi™") = P(P;, S|P, 517 (3.9)
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In this study we have limited our language models to 3-grams, so we approx-

imate Equation 3.9 as:

P(w;lwi™") = P(P, 8i|PZ3, 8i25) (3.10)

In order to compute Equation 3.10 we should make some Markov
assumptions[4] that encode the dependency of prefix and suffix of a word to

prefixes and suffixes of previous words.

Model 1: The first method has already been mentioned. It assumes that
the sequence of prefixes and sequence of suffixes embedded in a se-
quence of words are outputs of two independent random processes.
The probability of a sequence of prefixes and suffixes in Equation 3.7

is now computed as in the following equation:

N
P(PY.SY) =11 P(PIPZ) x P(Si|Si2) (3.11)

i=1
Model 2: Our motivation in using suffixes and prefixes is the assumption
that they capture some information of the part of speech and stems
of words, and we can benefit from this hypothesis in a cost effective

way. If such assumption is correct, then we should expect some cor-

relation between the sequence of prefixes Py, Ps, ..., Py and sequence
of suffixes of a sentence Si, Ss, ..., Sy of N words.
P(P, S;|P™", S17Y) = P(Si]Si2) P(Pi]Si_y) (3.12)

Recall that the above equation corresponds to a state emission HMM
A, where S;, S, are hidden state labels that are 2-grams of suffixes
and P, are emitted symbols from these states. The probability of a
word sequence corresponds to P(O, Q|)), where O is the observation
sequence(i.e. prefix sequence) and @ is the state sequence induced by

the sequence of suffixes.

P(O,QIN) = P(O[Q,NP(Q|})

T

T
= H bqt H A1t
t=1 ¢t

=1
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P(yeldan) P(dim|ye)
v
okul P(okul|dan) hastane P(hastane|ye) gel P(gel|dim)
sinema P (sinemaldan) adliye P(adliye|ye) getir  P(getir|dim)
araba P(arabaldan) kafe P(kafelye) in  P(in|dim)
telefon P(telefon|dan) Ali  P(Ali|ye) soyle P(soyle|dim)

Figure 3.5: A part of a HMM where 1 syllable long suffixes correspond to hidden
states and remaining prefix parts correspond to emission symbols.

Figure 3.5 shows a part of a HMM where states are 1-grams of suf-
fixes and emitted symbols are prefixes that remain. Then in Equa-
tion 3.12 the state transition probability is P(S]S:"5) and the obser-
vation probability is P(P|S!_;). Note that this HMM first predicts
the hidden state that corresponds to the next word’s suffix and then
predicts the next word’s prefix using this predicted suffix. This model
is built on the assumption that the structure of a sentence is strongly
dependent on its suffixes, which is true for Turkish as discussed in the
beginning of this chapter.

Model 3: The HMM'’s assume that the observations are statistically inde-
pendent. Although the previous model assumes that suffixes are good
clues for predicting words, it also assumes that the prefixes which are
approximations to roots are independent of each other. Due to the free
word order in Turkish this assumption may result in better results,
however collocations might be another clue at the word’s root level.
For instance the root sequence bakan kurul which is also the root
sequence for bakanlar kurulu(cabinet), is more probable than bakan
bayan(the woman that baby-sits).

In this model we modify the previous assumption by assuming inde-

pendence of suffixes:
P(P;, S|P, S7) = P(B|PZ) P(Si| PLy) (3.13)

Models 4,5,6,7: The previous two models could be trained from a corpus
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W;—1 w;
! !
P, + S P+ S
P(SZ'|PZ'_1,SZ'_1) P(PZ|SZ_1,SZ)

Figure 3.6: Part of a Markov Chain corresponding to the prefix-suffix language
model in Equation 3.14

using forward-backward algorithm and can be used for predicting pre-
fixes correponding to a given sequence of suffixes (or vice versa). How-
ever in our case both prefix and suffix part of a word are known to us
and we can use visible Markov Models, whose states predict the next
prefix and suffix alternatively on a given path in the Markov Chain.
For instance, the model in Equation 3.14 first predicts the suffix of
the next word given the prefix and suffix of the previous word and
then predicts the prefix of the next word given the suffix of the next

word and suffix of the previous word as in Figure 3.

—

@
Il
—

PPN, SY) = P(S;|Pi—1, Si—1)P(Pi|S;, Si—1)  (3.14)

P(S;|P;—1, Si—1) P(P;|S;, Pi—1) (3.15)

Il
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N
Il
—

P(P| Py, Si-1) P(Si| P, Si-1) - (3.16)

P(P|P 1,8 1)P(Si|P. Piy)  (3.17)

I
—

@
Il
—

There are 4 possible variants of this approach that are derived by
choosing prefix or suffix for prediction given the prefix and suffix of
the previous word and choosing the prefix or suffix of the previous
word for predicting the remaining part of the next word.

Note that these four language models use the immediate predecessor of
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the predicted word as an infomation source(1" order Markov), unlike
the previous language models which have used previous 2 words(2™
order Markov). 2-gram language models are used in systems where
it’s too costly to use higher order language models, such as in acoustic
component of speech recognition.
Among these four models, we expect two of them to behave different,
3.14 and 3.17. This is because 3.14 favors suffixes whereas the 3.17
favors prefixes as the information source for predicting the next word.
Models 8,9,10,11,12,13,14: The posterior probability of a suffix in Equa-
tion 3.11 can be calculated by applying the class-based approach in

Equation 2.8 to suffix sequences:

P(SiSi7Y) = P(Sile(S:)
X P(c(Sy)[e(ST1)) (3.18)

where function ¢() returns the class of the suffix if its argument is
a single suffix, and if its argument is a suffix sequence, returns the
sequence of classes that corresponds to it. The probability of a given
sequence of prefixes and suffixes will be as in Equation 3.18. Note
that we derived this model by replacing the suffixes with their classes
and by adding a Markov Property to the emission of suffixes from the
suffix classes.

The suffix classes, ¢(S;), are computed using the mutual informa-
tion based clustering algorithm that is introduced in Section [2]. We
expect such a clustering algorithm will generate classes that are pop-
ulated by inflectional suffixes that represent the same linguistic phe-
nomenon and their allomorphs that are generated through various
morphographemic rules.

By applying the same class-based approach to our 3-gram Models 1

to 7 we derive the following class models:

P(c(S)|e(Si2)) P(PIPZ,)) P(Sile(S:) - (3.19)

—

@
Il
—

P(PY,S7) =

P(c(Si)]e(S;72)) P(Ple(S; 1)) P(Sile(S:) - (3.20)

I
e

s
I
_
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P(Pi|P3)P(c(S:) 1P 1) P(Sile(S)))

I
e

@
Il
-

I
—

S
Il
-

P(c(Si)|Pi-1, ¢(Si—1)) P(P;]e(Si, Si1)) P (Si]e(S:))

P(c(Si)|Pi-1, ¢(Si—1)) P(P]e(S:), Pio1) P(Sile(S;))

Il
—

@
Il
-

P(PBi|P;1,¢(Si-1))P(Si|c(Si-1), P;) P(Si]e(Si))

I
e

s
I
_

I
e

@
Il
_

P(Py|Pi—1, ¢(Si—1))P(Si|c(Pr—1, P—1)) P(Si|c(S:))

Once we have defined our models we continue with the domain that we will apply

our language models.

3.5 Lattice Rescoring for JANUS

JANUS|38] is a speech-to-speech translation system and the speech recognition
engine underlying this system is called JRTk[8], stands for JANUS Recognition
Toolkit. JRTk is built as a programmable toolkit in order to allow rapid develop-
ment of speech recognizers for experimenting with different approaches and ideas.
JRTk uses a multiple pass decoding schema. Recall that in the decoding phase
of the speech recognition task, this kind of recognizers do not use the single best
candidate produced by the Viterbi search but rather multiple hypotheses as an
N-best list or N-best word lattice for further refinement. By using such a multiple-
pass strategy the JRTk speech recognizer employs simple and efficient knowledge
sources in the first pass to prune the large search space so that expensive and so-
phisticated knowledge sources can be used in the second pass to find the globally

optimum utterance as in Figure 3.5[17].

The word lattice generated by the Viterbi pass of the decoding is a directed
acyclic graph that contains all hypothesized sentences. Each node of the lattice
corresponds to a word wy, that starts at frame F(wy). In addition to the start

frame and the word itself, the accumulated score of the word in the backtrace of
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W ,:: N-Best Decoder

Speech Signal

N-Best List

Rescoring |..... . Best utterance

’ Simple Knowledge Sources ‘ ’ Smarter Knowledge Resources

Figure 3.7: Multiple-pass decoding prunes the search space in lower levels to use
more sophisticated knowledge resources in higher levels of search

the Viterbi pass is also stored on each node. Edges in the word lattice connect
a node containing word hypothesis wy, starting at frame F.(wy) to all possible
successor words in the lattice. The edges in the word lattices have four attributes.
Since the recognizer assigns a range of exit frames for each utterance, an edge
between word wy, and word wg stores a possible word exit frame F,(wr) for the
word wy, and an acoustic score for wy between the frames F.(wr) and F,(wp).
Also two attributes that uniquely identify the next node, wg and F.(wR) are

stored on this edge.

In this thesis we are going to use a Turkish speech recognizer|[3| that was built
using JRTk. Figure 3.10 is a visualized output of this recognizer for utterance
“OSTIMde acilan sergide OSTIMde”. Figure 3.8 is a hypothetical word lattice
output that demonstrates the format of Turkish recognizer’s N-best lattices and
Figure 3.9 is the corresponding visualization of the lattice. Note that <s> stands

for sentence begin hypothesis and < /s> stands for sentence end hypothesis.

The word lattice generated by the recognizer looks like a 15 order Markov
Model introduced in the previous chapter, however the probabilities on the edges
do not sum to 1. It is possible to readily apply a 2-gram language model to
compute the edge costs for searching the globally optimal utterance using the
Viterbi search or any other shortest path algorithm. In order to use a 3-gram
language model we need to increase the context length stored in the nodes to 2

words as described in the previous chapter.



CHAPTER 3. PREFIX-SUFFIX MODELS 46

%TURN: TU002_66
BEGIN_LATTICE
45 {</s>} -score 2.9E+02
40 {im} -score 6.7E+02 -links { {45 {</s>} 44 3.2E+02}}
35 {lime} -score 4.9E+02 -links { {40 {im} 39 4.8E+02}
{45 {</s>} 44 1.BE+02}}
30 {kelime} -score 7.1E+02 -links { {40 {im} 39 4.8E+02}
{45 {</s>} 44 2.8E+02}}
20 {dakik} -score 7.1E+02 -links { {40 {im} 39 2.8E+02}
{35 {lime} 34 2.8E+02}
{45 {</s>} 44 2.8E+02}}
5 {buradaki} -score 7.1E+02 -links { {30 {kelime} 29 3.0E+02}}
5 {bardak} -score 7.5E+02 -links { {20 {dakik} 19 3.3E+02}
{35 {lime} 34 5.3E+02}}
5 {bura} -score 7.5E+02 -links { {20 {dakik} 19 4.3E+02}
{35 {lime} 34 5.6E+02}
{30 {kelime} 29 8.5E+02}}
0 {<s>} -score 1.4E+04 -links { {5 {bura} 4 3.3E+02}
{5 {bardak} 4 3.3E+02}
{5 {buradaki} 4 3.3E+02}}
END_LATTICE

Figure 3.8: A small hypothetical N-best lattice file output of JRTk

536402
336402

S.6E+02
281402 i 155402
335402 4.3E+02 4.8E+02
T 20, dakik, 7.1E+02 2 81402
336402 851402 SE

3.0E+02 4.8E+02

Figure 3.9: A hypothetical word lattice with 16 utterances.






Chapter 4

Experiments and Results

Insanity: doing the same thing over and over again and expecting different
results.

Albert Einstein

In this chapter we first introduce the lattice corpus we have used for testing
our models. Then we continue the discussion on the language models that were
introduced in the previous chapter, elaborating on the training text corpora and

experimental details.

4.1 Lattice Corpus

We have conducted several tests of our language model on the task of selecting the
best sequence of words from word lattices generated by JRTk large vocabulary
continuous speech recognizer modified for Turkish[3]. The speech recognizer has

a reported 16.9% word error rate.

The Turkish recognizer uses a multilevel recognition schema to adjust its
vocabulary for each utterance in order to avoid the high out of vocabulary rate[9].
In the first pass the vocabulary of the recognizer is filled with possible roots and

in the second pass a new vocabulary of words that are generated from the words

48
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recognized in the first pass are used as the vocabulary of the recognizer to run

on the same input.

The speech corpus used in the generation of these lattices is a part of Glob-
alPhone project[29]. The speech samples consist mainly of national and inter-
national economics and politics news read by native Turkish speakers. In our

corpus we have a total of 123 lattices corresponding to different utterances.

4.2 Language Models

4.2.1 Baseline Word-Based Language Model

We have used word 3-gram language models as a baseline system to compare the
performance of our models. 3-gram language models approximate the probability

of a word sequence as:

PW) = ﬁ P(w;|w;_1, w;_s)

i=1
Although this language model is very commonly used in speech recognition of
English, the rapid vocabulary growth of Turkish lowers its performance in our
tests. In word based language modeling we used a vocabulary of 64 thousand
words, to train our models, and we have included the unknown word token <unk>

in this model.

We have trained our language models using a 10M word text corpus that is
extracted from an online Turkish newspaper|[20, 10, 37]. The articles in the corpus

are from various genres including sports, domestic affairs and foreign affairs.

The 3-gram models we have used in our tests are generated by SRI language
modeling toolkit[36], which also applies Good-Turing smoothing and Katz Back-
off.
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4.2.2 Prefix-Suffix Based Language Models

The language models that we have tested are a subset of the models that have

been listed in the previous chapter.

The prefix-suffix models discussed in the previous chapter have two variables p
and ¢ that denote the length of the prefix and length of the suffix to be extracted
from the words. These two variables should be set in a way that the first p units
of the words should capture the words’ stems and the last ¢ units of the words
should capture their most significant suffixes, that is the most significant IGs. In
some sample text of 1 million morphologically disambiguated words, Hakkani-Ttir
has found out that the average root length is 4.10 letters and the average suffix
length is 1.71 letters[10], and has got the best results using 4 letter prefix and 3

letter suffix.

A different approach to the issue of prefix and suffix units is to use the first p
syllables for prefix and last g syllables for suffix of a word. Since the aim is to set
a window size for the significant part of the words, such a variable size window
might perform better. The transcription of Turkish is very similar to the phonetic
representation and splitting words into syllables is a cheap computational task as
described by Solak and Oflazer[32]. In our prefix suffix language models we have
adapted this approach, since the syllables correspond to morphemes better than

fixed sized suffixes.

The optimal values for prefix and suffix lengths for getting best performance
from the language models are likely to be inherent in the language, for this reason
we have set the prefix and suffix lengths in accordance with these findings. Since
we have used syllable based language models we have set the prefix size to 2
syllables and suffix size to 1 syllable, which roughly correspond to the letter
based findings of Hakkani-Tiir.

In our prefix and suffix language models we used a prefix vocabulary of size
14000 and suffix vocabulary of size 1000 from the most frequent prefixes and

suffixes. We treated the rest of the prefixes and suffixes as unknown tokens
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<unk>, and assigned a uniform probability for them.

4.3 'Testing

We have implemented an evaluation system for training and testing our models.
Figure 4.1 shows the framework of this sytem. The rectangles show data that flows
on the arcs, and bold rectangles are inputs of the system. Diamonds represent
computations and triangles represent databases where generated data is stored

for further processing.

The upper part of this figure represents the training modules of the whole sys-
tem. In the training modules we have used PERL and C++ for our implementa-
tions. The ngram-class and ngram-count are parts of the SRI language modeling
toolkit. ngram-class is an implementation of mutual information based clustering
and ngram-count is a language model extraction tool that gets n-gram frequen-
cies that are extracted from corpora as its input and construct ngram-models
with Good-Turing smoothing and Backoff discounting. The frequency generator
produces ngram frequencies for the plain models by doing counting and replaces
the suffixes with their class names beforehand if a class based language model is

going to be generated.

The lower part of the figure depicts the evaluation component of the whole
system. This part has also been implemented using PERL and C++ together. A
lattice that is selected for decoding is first converted to Latin character encoding,
and the upper case distinction in its hypotheses are removed. The decoder that we
have implemented in C++ takes language model pairs and lattices as its input and
produces the N best utterances that is induced by them. The language models are
applied to the words in the hypothesized words by first incrementing the context
of the input lattice from 2 to 3. Then while decoding the lattice using Viterbi
algorithm, the prefix and suffix parts of the hypotheses are extracted by using the
same routines in the training part for applying the prefix-suffix language models.

Note that not all the prefix suffix language models use 3-gram word context, in
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these cases the lattice context is not incremented.

In order to find the weights of the language model score and the acoustic
model score, we have gathered performance data of decoding in a training corpus

of 6 lattices for a range of language model weights by generating N-best lists.

Training Corpus

Prefix Length
Suffix Length

ngram
frequencies

lass Definitions

Frequency
Generator

ngram
frequencies

Model Database

Class Database
7

Induced Class

Training

Evaluation

Lattice Database

Figure 4.1: The implementation framework of the proposed language models

4.4 Results

In the kingdom of the blind, the one-eyed man is king.

Desiderius Erasmus, Adages
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There are acoustic model scores on each lattice that represents the probability
of a particular word to be uttered between two frames. The beginning frame of
an uttered word is encoded in the state that has the same label and a possible
end frame along with the acoustic score of the word between these two frames is
encoded in the links of this state. We have weighted these acoustic model scores
and our language model scores in order to compute the best hypothesis in the
lattice.

W = arggvnax P(A|W)™ x P(W)? (4.1)
We have chosen acoustic model weight a and language model weight 3, such that
a+ B = 1. We have determined optimal a and S values to be 0.02 and 0.98 for

our 2-gram models and 0.10 and 0.90 for our 3-gram models, through training

our models on a 6 lattice training set.

Acoustic WER 54.51%
Recognition Recall | 90%

Table 4.1: Performance of the recognizer using only acoustic model scores.

4.4.1 Initial Performance of the Recognizer

The performance of the recognizer when only acoustic model scores are used is
shown in Table 4.1. Among the 20 lattices that we used in our test set 2 lattices
did not contain the corresponding correct utterance, and the average WER using

the acoustic model was 54.51%.

4.4.2 Baseline Word-based Language Model Performance

We have used 64M vocabulary 3-gram and 2-gram language models to compare
our results. The performance of 3-gram and 2-gram language models are shown
in Table 4.2. We have trained our word based language model on a 10 million
word corpus, using a 64 thousand word vocabulary of most common words in this

corpus.
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WER
Word 2-gram | 39.78 %
Word 3-gram | 31.65 %

Table 4.2: Performance of the recognizer with word based 2-gram and 3-gram
language models.

4.4.3 Performance of the Prefix Suffix based Language
Models

We have tested 7 prefix suffix models in our experiments.Table 4.3 lists these
language models. Each prefix-suffix model is composed of two submodels that
predict the suffix and prefix of the next word separately. The performance of

these models is shown in Table 4.5.

Model 1 | P(P|Pi_s, P,_1) x P(Si|Si—2, Si_1)
Model 2 | P(S;|Si_s, Si_1) x P(P|Si_1, S:)
Model 3 | P(P;|P;_s, P,_1) X P(S;|P;i_1, P;)
Model 4 P(Si|PZ'_1,SZ 1) X P<P|SHSZ 1)
Model 5 | P(S;|Pi_1, Si—1) x P(Py|S;, P,_1)
Model 6 | P(P,|Pi_1, Si—1) x P(Si|P;, Si_1)
Model 7 | P(P,|P;_1, Si_1) x P(Si|P,, P_y)

Table 4.3: The models that we have tried in our experiments

Since our aim was to compare the size of the models as well as their perfor-
mance with the baseline model, we have given emphasis on size in our experi-
ments. We have used a small vocabulary size for our prefix suffix language models
and a large vocabulary size for word based baseline language models to demon-
strate the compactness of prefix suffix based models against word based models.
The n-gram frequencies stored in the models vary directly proportional to the size
of the vocabulary that generates them. The size of n-grams decrease as we go
from words to suffixes in Figure 4.4. The purely suffix based submodel of Model
2 has 15,001 1-grams, 19,766 2-grams and 67,450 3-grams, whereas the purely
prefix based submodel of it has 15,001 1-grams, 112,917 2-grams and 246,232
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3-grams.

The total number of 3-gram probabilities stored in the language models of
prefixes and words decrease with respect to their 2-grams due to data sparseness.
Although, empirically 3-grams are more than 2-grams, only a small proportion
of them have significant probability mass that will be beneficial for the language

models. For this reason, the total number of 3-grams in these models are less

than the total number of their 2-grams.

l-gram | 2-gram 3-gram

Word-based | 64,001 | 2,177,344 1,074,901

Model 1 15,001 | 1,601,291 + 19,766 | 672,758 + 67,450
Model 2 15,001 | 19,766 + 112,917 67,450 + 246,232
Model 3 15,001 | 1,601,291 + 621,323 | 672,758 + 658,186
Model 4 15,001 | 85,063 + 112,917 260,156 + 246,232
Model 5 15,001 | 85,063 + 215,539 260,156 + 658,186
Model 6 15,001 | 310,851 + 151,790 | 636,913 + 246,523
Model 7 15,001 | 310,851 + 621,323 | 636,913 + 658,186

Table 4.4: Size of language models used in experiments in terms of n-gram fre-
quencies they contain. The two components in summations are sizes of the sub-

models whose probabilities are multiplied as shown in Table 4.4.3.

Context | WER
Model 1 | 3-gram | 40.41%
Model 2 | 3-gram | 37.18%
Model 3 | 3-gram | 40.41%
Model 4 | 2-gram | 44.20%
Model 5 | 2-gram | 41.04%
Model 6 | 2-gram | 44.24%
Model 7 | 2-gram | 48.57%

Table 4.5: Performance of our prefix suffix models.




CHAPTER 4. EXPERIMENTS AND RESULTS 56

4.5 Discussions

The previous subsections contain interesting results about the performance of our

recognizer. First of all, the 2-gram Model 5
P(Si|Pi-1, Si—1) x P(B]Si, Pic1)
performs as well as the 3-gram Model 1
P(-Pi|P2¥27-Pifl> X P<Si|Si72>Sz’fl)

. This is probably because of the assumption in Model 5 that suffixes and prefixes
are generated from independent random processes. Unlike Model 1, Model 5

respects a statistical correlation between prefix and suffix parts of words.
The performance of Model 7
P(P|P;—1, Si-1) X P(Si| Py, Pi_1)

performs interestingly worse than the other 2-gram models. This model is differ-
ent from the other 2-gram models in its assumption that the suffix of the next
word is dependent only on the prefix of the previous word and prefix of the next

word

P(Si|P;, Pi-1)

. This assumption is usually not true due to the productive suffixation in Turkish.

Let us consider the following prefix sequence:

arag dosya

One can routinely generate many legal and highly probable Turkish noun phrases
by appending suffixes to the prefixes in the above sequence. Thus Model 7 can
only assign a nearly uniform probability to all these possible suffixations, which

will not differentiate between the hypotheses.

3-gram models are usually used in applications where quality of the hypothe-

ses are more important, however we have trained our models with a very small
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vocabulary. The real performance of prefix and suffix parts of words in predict-
ing in 3-gram word context can only be seen when large vocabulary of prefixes
and suffixes is used. In our experiments we have used prefix-suffix 3-grams to
predict 2-gram contexts, however we have restricted ourselves to using 3-grams
and haven’t used 4-grams to model 3-gram word context. We think that using
prefix suffix 4-grams for predicting in 3-gram word context will perform as well

as word based 3-gram models.

Among the prefix suffix based 3-gram language models, Model 2 performs
best. Recall that this model was a HMM over the hidden suffix states that
generate prefixes. The high performance of this model is evidence of the fact that
in Turkish suffixes contain a larger amount of information than do the prefixes

in 3 word phrases.

Also, according to our results we have found a 2-gram prefix suffix language
model(Model 5), that has similar performance to a word 2-gram language model.
The nice property of Model 5 is the fact that its size is 55% of the size of the
word 2-gram model. So one can use Model 5 in computations where memory is

scarce and there’s a need for linguistic word sequence information.

The lexical tree search at early stages of the speech recognition that has high
memory demand, requires effective search space pruning techniques to cope with
this problem. Language model lookahead [6] is one technique that is used in
most state of the art speech recognizers for discriminating between competing
hypothesis with similar acoustic scores at this stage of recognition. The identity
of a hypothesis is known as the last phone of the word is recognized by the
recognizer, and the first phone of the probable words that the language model
determines is instantiated for recognizing the next word. Since new words are
instantiated at the beginning of every frame in the acoustic signal, even with the

language model lookahead there is a huge memory requirement.

If the word-based 2-gram language model is used, it will consume a lot of
memory at a time it is most needed. Model 5 can be used in language model

lookahead instead of a word 2-gram language model in this stage.
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Models 4 and 6 perform nearly same in selecting the best hypotheses in lat-
tices, but they cannot reach the quality of Model 5. Model 4 predicts the suffix of
the next word and then predicts the prefix of the next word by using only suffixes
of the two words. As we investigate Model 5 which performs better, we come to
the conclusion that although suffixes are better clues than prefixes for predicting
the next word, using both prefix and suffixes performs even better. We can apply
this conclusion to prefix suffix models that have 3-gram word context. If we use
4-grams of prefixes and suffixes, we can include prefix information into Model 2

which will perform better. Possible 4-gram models are:

P(P;|Pi—3, P,—1,S;—1) X P
P(P|S; 2, P;1,5;1) x P
P(S;| P2, Pi_1,S;—1) X P
P(S;|Si—2, Pi—1,S;—1) X P

Si|Si—2, Si—1, P,
Si|Si727 Si,1
P|Sz 27Pz laS

i)
F)
)
Py|Si—s, Pi_1. Si)

( (
( (
( (
( (



Chapter 5

Conclusion

In this thesis we have presented a set of tools for language modeling of Turkish

through statistical methods.

We have tried several statistical language models that use subword units to
model language. Using subword units for modeling reduces the probability of
seeing previously unseen symbols in the test data. That is, subword language
modeling units decrease the out of vocabulary rate. But this does not translate
into a decrease in the WER, because of the information loss when subword units
of a word are processed separately. Kspecially, since Turkish has productive

agglutination, it’s hard to predict the suffix parts of the words.

The performance of our subword language models demonstrate a stronger
correlation between the surface word sequence and the suffixes of these words
than with the prefixes. However, using both prefix and suffix parts of the previous
words for predicting the next word’s prefix and suffix parts performs best in our
models with 2-gram word context. We have restricted our experiments to subword
3-grams, and we did not experiment the performance of our approach by using
prefix suffix n-grams with longer context. But there’s strong evidence that such

models will be successful.

Although we could not achieve a remarkable decrease in the word error rate

99
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through using subword units in language modeling, we have reached the perfor-
mance of a large word based language model with a half sized subword model in
2-gram word context. This language model can be used in acoustic decoding part
of a Turkish speech recognizer as a cheap and intelligent pruning heuristic for its

large search space.
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