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ABSTRACT

Topkara, Umut Ph.D., Purdue University, August, 2007. Information Security
Applications of Natural Language Processing Techniques . Major Professor: Mikhail
J. Atallah.

In this thesis we investigate applications of natural language processing (NLP)

techniques to information security problems. We present our results in this direc-

tion for two important areas: password authentication, and information hiding in

natural language text. We have limited this thesis to the realm of language engineer-

ing, i.e., our emphasis is on adapting the existing NLP techniques for our purposes,

rather than in developing new NLP techniques. Our password mnemonics system

helps users to remember random passwords, hence making it possible to implement

organizational policies that mandate strong password choices by users. Moreover, in

our system password changes do not necessitate a new mnemonic, thereby further

easing the users’ task of memorizing their respective mnemonics. Our robust natural

language text watermarking system can avoid the removal of the watermark text by

an automated adversary, in the same way used by authentication systems to avoid an

automated adversary’s compromise of the password string hidden within the password

mnemonic. We have also laid the groundwork for followup research in this area.
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1. INTRODUCTION

Language is the most natural mode of information exchange for humans. It is only

natural for fields of Computer Science to adopt natural language technologies to fa-

cilitate the smooth transition of their products into usage in daily life. In this thesis,

we have demonstrated that Natural Language Processing (NLP) technology provides

methods that can be used to significantly enhance the security of a variety of applica-

tions by providing improved authentication and information hiding mechanisms. Our

work is among the first ones to apply NLP to these important information security

problems and it introduces significant improvement over the previous approaches.

Natural Language Processing (NLP) studies problems in automated understand-

ing and generation natural human languages. Traditional applications of NLP include

the broad areas of (i) computers interfaces that can interact with users in a spoken or

written natural language medium, (ii) knowledge acquisition from existing informa-

tion sources such as books and tv broadcasts, (iii) information retrieval from repos-

itories such as the World Wide Web, and (iv) translation of speech or text among

different natural languages. Most of the systems that implement these applications

have to perform a common set of analysis tasks which vary in their depth from word

forms, and syntax to semantics. In this thesis we have limited our focus to adapting

the existing NLP techniques for our purposes, rather than in developing new NLP

techniques. We will introduce these NLP techniques throughout the dissertation as

we use them.

1.1 Applications of NLP to Authentication

Human aspects of information security have been under the spotlight of recent

research in various fields including human-computer interaction, information security
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and psychology [1]. This interest is well justified by the recent rise of threats that

exploit security vulnerabilities involving human factors.

Passwords have a critical place among the security vulnerabilities that involve

human aspects, as they are still the first line of defense in many computer systems.

Usability of password authentication has been an issue ever since their initial usage.

The conflicting requirements of more entropy for increased security, and less entropy

for increased memorability have created the password usability problem [2]. Pass-

words are usually seen by employees as burdens before doing real work. They are

almost always disabled if company policy allows or otherwise weakened against the

policy. It has been repeatedly shown that users’ preference for easily memorizable

passwords creates major vulnerabilities in systems [3–5] in the form of the two step

attack process of (i) gaining access as the user with a weak password, followed by

(ii) escalation of privilege (e.g., through buffer overflow [6]) or other forms of system

subversion.

Cost effective alternatives to current text-based password authentication have

yet to find widespread acceptance. Alternatives to current password authentication

include single sign-in distributed authentication and smartcard-based authentication

as well as alternative password methods such as graphical passwords. Even if an

alternative to it arises among these candidates, the widespread usage of text password

authentication system hints that it will continue to be used quite a while.

Instead of replacing text password authentication with alternatives, we have aug-

mented existing authentication systems with Natural Language Processing technolo-

gies to improve password security without sacrificing usability and memorizability (in

fact doing quite the opposite). Usability research suggests that a considerable portion

of vulnerabilities are due to user behaviors that are related to poor user experience.

The integration of natural language into security applications provides a better ex-

perience for users, who are more comfortable in dealing with plain natural language

text than random strings, thereby making the underlying security stronger.
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It is not an uncommon practice among experienced users to create passwords by

picking letters from a “mnemonic” phrase; thereby compromising security, because

their choices are not random [5]. Inspired by this practice, we have devised methods

to automatically generate password mnemonics in order to help people remember

their truly random passwords, hence increase the security of existing password au-

thentication systems.

Password mnemonic generation is the task of creating memorable sentences that

can encode random passwords; given a random password a password mnemonic gen-

erator will output a sentence that encodes the password and is easy to remember.

Note that this does not decrease the password’s security because is is truly randomly

selected before the mnemonic is generated.

We have identified the following specific requirements for a password mnemonic

system:

• The security of the system with the mnemonic should be at least as good as the

security of the system it replaces.

• The attacker should not gain any advantage by better knowledge of the under-

lying natural language.

• The password space that can be addressed by mnemonics should be as large as

without it.

• Mnemonic sentences should be easily memorizable by users.

• The user should be able to decode the password from the mnemonic trivially or

easily, without the need for a portable computational device.

User studies suggest that random passwords are an even bigger problem for users

that have to remember more than one password for several systems [1, 7, 8]. In a

mnemonic system that uses one mnemonic per password, these users would have to

remember a different mnemonic for different accounts, unless they reused the same

password across these systems. Therefore, there is a need for a mnemonic system
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in which the users are required to remember only one mnemonic sentence for many

passwords (“one mnemonic to rule them all”). The requirements for single password

mnemonics are augmented with the following three requirements so that the security

guarantees apply to all the passwords encoded with the multiple password mnemonic:

• The scheme produces a single mnemonic for multiple passwords

• Even if the adversary obtains i out of k passwords (by some means), it should

not aid him in cracking the (i + 1)st password, for all i < t. Here t is a security

guarantee, such that 0 < t ≤ k

• Changing one of the passwords should not require the change of the mnemonic

Our efforts have led to the novel notion of mnemonics for multiple truly random

passwords.

1.2 Applications of NLP to Information Hiding

As we shall discuss next, the Natural Language Processing techniques we de-

veloped for improving password security have led us to better results in the area of

information hiding. Watermarking is the practice of embedding a message into a cover

document such that the message becomes part of the cover document [9] and this em-

bedded message cannot be removed without destroying the value of the document.

Watermarking is a valuable tool for systems that manage rights for digital content

as well as metadata associated with digital documents. Watermarking has tradition-

ally been studied in the context of video and images, and it has only recently been

studied for natural language text documents. Watermarking in natural language text

has, in the past, consisted mainly of carrying out approximately meaning-preserving

modifications on the given cover text until it encodes the intended mark. A major

technique for doing so has been synonym-substitution. In these previous schemes,

synonym substitutions were done until the text “confessed”, i.e., carried the intended

mark message. We propose here a better way to use synonym substitution, one that
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is no longer entirely guided by the mark-insertion process: It is also guided by a

resilience requirement, subject to a maximum allowed distortion constraint. we fa-

vor the more ambiguous alternatives. In fact not only do we attempt to achieve the

maximum ambiguity, but we want to simultaneously be as close as possible to the

above-mentioned distortion limit, as that prevents the adversary from doing further

transformations without exceeding the damage threshold. The quantification we use

makes possible an application of the existing information-theoretic framework, to the

natural language domain, which has unique challenges not present in the image or

audio domains. The resilience stems from both (i) the fact that the adversary does

not know where the changes were made, and (ii) the fact that automated disambigua-

tion is a major difficulty faced by any natural language processing system (what is

bad news for the natural language processing area, is good news for our scheme’s

resilience).

Our approaches to information hiding and mnemonic generation are similar in

the steps they take as they both use a very simple but powerful text generation

technique. Mnemonic sentence generation is markedly more flexible, since we do not

have an attacker who is trying to remove our modifications to the original sentence,

nor there is a requirement that the generated sentence carries the same meaning as

the original sentence. On the other hand, natural language watermarking does not

have the requirement that the decoding be possible through a simple algorithm that

can be carried out in a short time by a human.

1.3 Organization of the Dissertation

In Chapter 2 we propose, develop and evaluate a system that automatically

generates memorable mnemonics for a given password based on a text-corpus.

In Chapter 3 we propose a password mnemonic scheme that can handle multiple

passwords with a single mnemonic, and is applicable to any existing system without
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any modification, as it does not require any form of involvement from the service

provider (e.g., bank, brokerage).

Chapter 4 deals with the question of authentication in environments where the

inputs are constrained to be yes/no responses to statements displayed on the user’s

screen (e.g., authentication in hands-free environments, authentication to tiny mobile

devices and authentication of people with disabilities, etc.) We present a mnemonic-

based system for such environments that combines good usability with high security,

and has many additional features such as (to mention a few) resistance to phishing,

keystroke-logging, resistance to duress and physical coercion of the user, and com-

patibility with currently deployed systems and password file formats (hence it can

co-exist with existing login mechanism).

In Chapter 5 we explore another application of the techniques we presented in

the previous chapters: The resilient watermarking of natural language text through

a mechanism that was previously thought to be inherently non-resilient, namely syn-

onym substitution (we used synonym substitution in the first three chapters to encode

passwords into mnemonic sentences).

Chapter 6 summarizes the contributions our work and concludes this disserta-

tion.
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2. TEMPLATE-BASED MNEMONIC GENERATION

Text-password based authentication schemes are a popular means of authenticat-

ing users in computer systems. Standard security practices that were intended to

make passwords more difficult to crack, such as requiring users to have passwords

that “look random” (high entropy), have made password systems less usable and

paradoxically, less secure. We have addressed the need for enhancing the usabil-

ity of existing text-password systems without necessitating any modifications to the

existing password authentication infrastructure. We propose, develop and evaluate

a system that automatically generates memorable mnemonics for a given password

based on a text-corpus. In this chapter we describe our initial experimental results,

which suggest that automatic mnemonic generation is a promising technique for mak-

ing text-password systems more usable. The initial system that we have built was

able to generate mnemonics for 80.5% of six-character passwords and 62.7% of seven-

character passwords containing lower-case characters (a-z), even when the text-corpus

size is extremely small (1000 sentences). In the next chapter, we will use an improved

implementation of the mnemonic generation system which generates longer passwords

with improved security.

2.1 Introduction

Text-password based authentication schemes are a popular means of authenti-

cating users in computer systems. The security of password based authentication

systems is directly proportional to the difficulty with which an adversary can crack

the passwords. A password that is difficult to crack could be intuitively thought of

as a string that is not based on a dictionary word and has maximum entropy (truly

random) [4,10–12]. However, the ability to remember completely unrelated sequence
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of items is very limited in human beings. Hence, the more secure the password is

(the greater the randomness), the more difficult it is for users to remember it. This

limited ability is further taxed by the fact that a typical user has access to multiple

computer systems and is advised to use a unique password for each system. The very

requirements that make text-password systems secure seem to make them less user-

friendly and paradoxically, less secure. Addams et al. [2] in their survey of users from

various organizations, found that standard practices adopted to ensure the security

of password authentication systems e.g. expiry mechanisms that force users to peri-

odically change passwords, actually resulted in the lowering of security. For example,

50% of the interviewed users wrote down their passwords in some form – making the

passwords susceptible to social engineering attacks. Also, it was found that password

expiry mechanisms resulted in the users frequently making “poor” password choices.

Many alternate schemes have been proposed to achieve both security and usability

in authentication systems. For example, Graphical Password schemes [13–16], lever-

age the fact that it is easier for the users to remember pictures. However, we believe

that text-password based systems will still remain prevalent in the near future for

reasons such as user resistance to change and cost of modifying the existing systems.

In this work, we address the need for enhancing the usability of text-password systems

without necessitating any modifications. We have developed a system which could

help users memorize several random passwords with ease using mnemonics. Our sys-

tem is complementary to the existing text-password systems and could be used as an

add-on or a helper utility. Our work is a promising first step towards reconciling, the

seemingly conflicting requirements of text-password systems: security and usability.

Our system increases the memorability of random looking passwords by supplying

the users with mnemonics that serve as “reminders” of the passwords. Mnemonics

have been widely-used as effective memory enhancement tools to help people remem-

ber lists of words [17]. In fact, many security-conscious users generate their pass-

words based on phrases that they can remember easily. For example, the sentence

“The quick brown fox jumped over the lazy dog” could be used as a mnemonic to



9

remember the password “Tqbfj01d”. A recent study by Yan et al. [12] confirms the

intuition that mnemonic-based passwords are memorable. The security of passwords

generated using such an approach depends heavily on the ability of an user to come

up with memorable mnemonics as well as the randomness of the password that these

mnemonics encode. It is conceivable that, as the number of passwords each user

has to remember increases, the user’s capability to generate memorable mnemonics

becomes increasingly taxed. This could lead to insecure practices such as reusing

passwords (or their minor variants) across different systems. Another vulnerability of

these passwords is that they inherit some regularity from the natural language (e.g.,

English) they belong. Unless they are carefully constructed to remove this regular-

ity, dictionary attacks can be successfully launched against such passwords [5]. Our

system removes relieves the user from the task of generating memorable mnemonics,

and the mnemonics that it generates encode truly random passwords.

The system that we describe in this chapter takes an existing text corpus and pre-

computes a database of syntactic and semantic variations of its sentences, where each

variation encodes a different password. Later, for any given random text-password,

our system searches through the pre-computed sentence space and automatically gen-

erates a list of easier-to-remember natural language sentences that could serve as

memory-aids for remembering the password.

The rest of the chapter is organized as follows. In Section 2.2, we describe the

architecture and implementation of the automatic mnemonic generation system. In

Section 2.3, we discuss some of the issues that arose while developing our mnemonic

generation system. We evaluate our system and report our results in Section 2.4. In

Section 2.5, we discuss related work that address the challenge of making authenti-

cation systems more user-friendly. Finally, we conclude in Section 2.6.
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2.2 Automatic Mnemonic Generation

The ability of human beings to remember a sequence of unrelated items is very

limited [18,19]. Hence, remembering a randomly generated password that consists of

a sequence of unrelated characters is an onerous task that frequently results in users

resorting to unsafe practices such as writing down their passwords [12]. However,

research in cognitive psychology [20, 21] has shown that the ability to memorize and

then recollect information is positively influenced by associating additional semantic

content with that information. The key idea is to automatically generate and associate

additional semantic content for any given password so that the additional semantic

content then acts as a mnemonic device that assists the user in recalling the password.

We use natural language sentences that convey some news or a story to provide

the semantic content. We refer to the association between a password string and a

mnemonic as encoding the password into the mnemonic. One possible way to encode

a password in a mnemonic could be to represent every character in the password

string by the first letter of a word in the mnemonic. For example, “The quick brown

fox jumped” can be used to encode the password “qbfj”. We do not use stop-words

to encode characters (in the previous example, the word ‘The’ was not used to encode

any character). For expository purposes, in the rest of this section, we assume that

the passwords consist entirely of lower-case Latin characters (a-z). Later in Section

2.3.1, we explain schemes to encode upper-case, digits and special characters.

The goal of automatic mnemonic generation is to automatically generate natural

language sentences containing some news or a story to encode a given password.

Instead of generating the sentences from scratch, we use a manually created corpus of

natural language sentences each of which contain some news or story. For a password

of a given length, if we have a large enough corpus, then it should be trivially possible

to encode all possible passwords using the sentences in that corpus. However, it is

difficult to obtain a large manually created corpus of sentences. Though there is a lot

of text available electronically (e.g., web pages, project Gutenberg [22], etc.), most
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of the sentences do not contain memorable information. For example, the sentences

found in literary works obtained from project Gutenberg are mostly descriptive in

nature, with very little “interesting” information to make them memorable. Moreover,

even if such a corpus is available, the space requirements of such a corpus is beyond

the reach of most modern day computers. For example, to support a password space

of 268 passwords (8 character passwords with characters from a-z), we need a corpus

of the size in the order of 268 sentences. Even if each sentence were to take only 10

bytes, such a corpus would occupy more than a terabyte of space.

We address these concerns by using a small core-corpus of highly memorable

natural language sentences. To offset the lack of variability in a small corpus, we

generate and store the semantic variants of each sentence in a compact fashion. Given

a password, we check if the sentences in the core-corpus are sufficient to encode it. If

not, we perform a dynamic search through the space of semantic variants to identify a

variant that can encode the password. Figure 2.2 provides a schematic representation

of the automatic mnemonic generation process. In the following sections, we describe

the major components involved in the automatic generation of mnemonics.

2.2.1 Reuters Corpus

We use the Reuters Corpus Volume 1 (RCV1) to obtain our core-corpus. The

RCV1 has over 800,000 news stories — typical of the annual English language news

output of Reuters. Specifically, we use the headlines from each news story to form

our core-corpus. The headlines are particularly attractive candidates as mnemonics

because:

1. They are simple in structure and hence easy to understand by even the average

user.

2. They provide summaries of events and hence contain more semantic information

than sentences found elsewhere.
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Fig. 2.1. Schematic diagram of the automatic mnemonic generation
process. The part-of-speech (POS) and stem information of each word
in the core-corpus sentences is input to WordNet to produce semantic
variants. For any given password, the semantic variants can then be
searched for a match.
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3. They are written with the intention of catching the attention of the reader and

hence are bound to be very memorable.

An example of a headline that contains memorable information is: “Egyptian plane,

overshoots runway, hits Turkish taxi.”

2.2.2 Generating Semantic Variants

We generate semantic variants of each sentence in the core-corpus as follows:

1. We use a sophisticated part-of-speech (POS) tagger to morphologically analyze

every word in each sentence and tag it with the appropriate part-of-speech. We

use the part-of-speech as a first-degree approximation of the real sense of the

word.

2. We then use WordNet [23] and the part-of-speech information to generate se-

mantic variants of each word.

Part of speech tagging: A vital piece of information that is necessary for gen-

erating semantic variants of a sentence is the sense information about each word in

the sentence. Many words have different meanings or senses in different contexts.

For example, the word bank can have the following senses: ‘the river bank’ or ‘the

Chase-Manhattan bank’. The correct sense of words is necessary to maintain seman-

tic coherence of the generated variants. Without the knowledge of the appropriate

sense, semantic variation techniques such as synonym substitution do not work very

well. Currently, we do not distinguish between all the different senses of a word. We

detect only those senses that manifest themselves as differences in parts of speech. For

example, the word butter can be used both as a noun and a verb. We use the Stanford

Log Linear Part-of-speech Tagger [24] to obtain the part-of-speech information of the

words in each sentence. The part-of-speech information serves as a first-degree ap-

proximation of word sense. In addition to the part-of-speech information, we perform
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Egyptian {Algerian, Angolan, Basotho, Bantu, Zairese, Zimbabwean, Zulu}

plane {airplane, autogiro, drone, glider, helicopter, orthopter, warplane}

overshoots {miss, shoot, overshoot, undershoot}

runway {platform, auction_block, bandstand, catwalk, dais, dock}

hit {play, foul, ground_out, toe, snap, kill, drive, hit, launch, loft}

Turkish {Azerbaijani, Kazak, Tatar, Uzbek, Uighur, Yakut, Kirghiz}

taxi {cab, hack, taxi, taxicab, minicab, car, automobile, machine}

Fig. 2.2. Examples of semantic relatives of the words in the sentence
“Egyptian plane, overshoots runway, hits Turkish taxi” obtained from
WordNet.

morphological analysis using PC-KIMMO [25] to obtain the “root” forms, tense and

number information about verbs and plural nouns.

WordNet and Semantic variant space: WordNet is a lexical reference sys-

tem developed by researchers at Princeton University [23]. It organizes English

nouns, verbs, adjectives and adverbs into synonym sets, each representing one un-

derlying lexical concept. Different syntactic and semantic relations link the synonym

sets. WordNet can be logically thought of as a labeled graph where synonym sets

are the nodes and the edges represent semantic relationships. For a given word

and its sense, it is possible to obtain semantically related words such as synonyms

(taxi → cab) , antonyms (hit → miss), hyponyms (taxi → minicab) and hypernyms

(taxi → car). It is possible to traverse further along the links to obtain a “transitive

closure” of hypernyms and hyponyms (hypernyms of hypernyms, hyponyms of hy-

ponyms, synonyms of hypernyms and so on). Let sentence Si be a sequence of words

wi,1, wi,2, · · · , wi,j. Then the semantic variant space of Si is represented in the corpus

as Wi,1, Wi,2, · · · , Wi,j where Wi,k is the set of words that are semantically related to

wi,k. Figure 2.2 contains an example of semantically related words obtained through

WordNet. By traversing through the semantic variant space, specific variants can

be obtained. For example, “Zulu balloon, misses dock, kills Kirghiz ambulance” is a

semantic variant of “Egyptian plane, overshoots runway, hits Turkish taxi”.



15

2.2.3 Dynamic Search of Semantic Variants

For a given password, if none of the sentences in the corpus can be used as a

mnemonic, then the space of semantic variants of each sentence is searched for a

possible match. Informally, a match is found if there exists at least one semantic

variant that is capable of encoding the password. Formally, a match is found for a

password with k characters c1, c2, · · · , ck, if and only if ∃i such that there is a mapping

{w1, w2, · · · , wk} −→ {Wi,x ×Wi,x+1 × · · · ×Wi,x+k−1}, where 1 ≤ x, x + k − 1 ≤ |Si|

and wy encodes cy for 1 ≤ y ≤ k. For each match found, we use the tense and number

information obtained using morphological analysis to regenerate the surface form of

the words in the mnemonic ( e.g. {flip, presenttense, thirdperson, singular} →

flips ). Finally, the user chooses one mnemonic from all the listed matches.

2.3 Discussion

2.3.1 Encoding Passwords in Mnemonics

Apart from the first letter encoding technique used to describe the automatic

mnemonic generation process, the other possible encoding schemes are:

1. nth letter encoding: This is a generalized version of the first letter technique

where every character in the password string is represented by the nth letter

of a word in the mnemonic. For example, the same mnemonic “The quick

brown fox” can be used to encode the password “huro” using a second letter

encoding. The obvious limitation for this technique is the fact that words are of

limited size. For example, we cannot use a 10th letter encoding in the previously

mentioned mnemonic since none of the words are that long. Another limitation

might be the fact that the nth letter encoding might not be as user-friendly as

the first letter encoding.

2. Last letter encoding: Similar to the first letter encoding, every character in the

password string is represented by the last letter of a word in the mnemonic.
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Using this encoding, the mnemonic “The quick brown fox” can be used to

represent the password “eknx”.

Any of the aforementioned encodings can be used to encode the passwords in

mnemonics and for a given password, the generated mnemonics are listed along with

the encoding technique used.

2.3.2 Handling Non Lower-case Characters

A challenge that arises due to the use of natural language text as mnemonics is

the ability to handle characters that appear infrequently, if at all, in natural language

text. e.g. Upper-case characters (A-Z), digits (0-9), special characters ($, % etc.). In

the following subsections, we propose and discuss various possible methods to encode

such characters in natural language text.

Handling Digits

Numeric digits (0-9) can be encoded in mnemonics using any combination of the

following ways:

1. Digits can be treated in exactly the same fashion as the letters. For example, the

password “1ioi” can be encoded using the mnemonic “In 1947 India obtained

independence”, where 1947 is used to encode the digit ‘1’. This process can be

generalized to enable the same mnemonic to be able to encode multiple pass-

words. If we replace the example sentence with “In NUMBER India obtained

independence”, then the same sentence can be used to encode any password

conforming to the regular expression [0 − 9]ioi. If the password is “2ioi”, the

mnemonic could be “In 2000 India obtained independence”. This is an example

of a semantic variation. However, WordNet does not handle numbers. Hence,

we perform the tagging and variant generation for numbers on our own.
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2. Lower-case characters can be overloaded to represent digits. A scheme similar

to what is popularly referred to as “leet speak” can be used. For example, ‘0’

is ‘o’, ‘1’ is ‘l’, ‘3’ is ‘e’ and so on. We discuss the limitations of overloading in

Section 2.3.2.

3. Instead of using a single letter to represent a digit, a whole word can be used

instead. This scheme is similar to the classical “pegword” mnemonic device

which uses words that rhyme with digits. For example, ‘1’ is ‘bun’, ‘2’ is ‘shoe’,

‘3’ is ‘tree’ and so on.

4. Digits can be encoded as length of the word. A well known mnemonic of this

type is “May I have a large container of coffee” which encodes the first 8 digits

of the number π. However, alternating numbers and alphabet letters may create

problems for users, as well as the task of counting letters in words from memory.

Handling Upper-case Letters

We use the first letters of proper nouns found in the natural language text to

encode upper-case letters. For example, “Paul chased the dog” is a mnemonic for

the password “Pctd”. To be able to accommodate occurrences of upper-case letters

in different positions, we use semantic tagging and variant generation similar to the

tagging used in handling digits. For example, the previous mnemonic is replaced

in the corpus with “NAME chased the dog” and a list of all names is maintained

separately. So now, the mnemonic could be used to encode any password satisfying

the regular expression [A − Z]ctd.

Handling Special Characters

There are 32 special characters that are printable in the ASCII characters set,

almost none of which appear in natural language text (except those used for punctu-

ation). So, we handle the special characters by overloading the lower-case characters.
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If we restrict the number of special characters that appear in the password to less

than 26, then for each special character, a unique mapping to a lower-case character

can be found. On the other hand, if we want to allow all 32 special characters, then

we need to use a sequence of two lower-case characters to represent a single special

character e.g., ‘%’ is ‘aa’, ‘#’ is ‘bb’, etc.

Overloading Lower-case Characters

A consistent theme that arises during attempts to encode characters that do not

frequently appear in natural language text such as digits and special characters, is

that of overloading. Overloading a lower-case character to represent digits and special

characters introduces an additional level of encoding that destroys the one-to-one

mapping between a mnemonic and the actual password. For example, the mnemonic

“The asinine brown fox” could encode both “abf” or “4bf” (if ‘4’ is encoded as ‘a’ as

discussed in section 2.3.2) or “]f” (if ‘]’ is encoded as ‘ab’). In the worst case, a user

who just remembers the mnemonic and the encoding scheme might have to try all the

different possible password candidates. We are of the opinion that after a few initial

trials during which the user might have to try all possible candidates, the user will be

able to recollect the overloaded information precisely. We also believe that the cost of

having to remember which letter has been overloaded is very minimal when compared

to actually remembering the password itself without the aid of the mnemonics.

2.3.3 Personalization of the Corpus

Though the core-corpus contains highly memorable sentences, it could be made

more memorable by personalizing the mnemonics generated according to the user.

For example, an user who is a soccer fan, might find a soccer related headline to be

more memorable than a headline about the latest stock exchange news. The RCV1

corpus was designed with text-classification applications in mind. Every headline and
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news story comes tagged with information about one or more of the categories that

it belongs to. This makes personalization extremely simple.

2.3.4 Ranking the Mnemonics

For many passwords, there are multiple candidates as mnemonics. There is no

general way to rank them. One possible way to rank candidates that are among the

semantic variants, is to use a semantic distance metric that measures how close they

are semantically related to the original sentences they are derived from. The seman-

tically closer relatives are ranked higher. The intuition behind using the semantic

distance metric is as follows: The original sentences are the most desirable due to

their memorability. The further removed the relation between a semantic variant and

the original sentence is, the greater the chance that the variant does not retain the

memorability of the original sentence.

2.4 Evaluation

The two properties that we desire in our automatic mnemonic generator(AMG)

are memorability and coverage. Memorability refers to the ease with which the gen-

erated mnemonics can be remembered and recollected. We depend on the appealing

nature of the sentences in our core-corpus for the memorability of the generated

mnemonics. Coverage refers to the number of passwords for which our system can

generate mnemonics. The coverage of AMG depends on a variety of factors such as

the length of the password, the size of the corpus, and the encoding technique. To

measure coverage, we define a ratio called Coverage Ratio (CR). Let n be the max-

imum number of characters in the password and let S be the alphabet from which

the characters of the password are obtained. For a given n, the maximum number of

passwords that can be generated using S, N =
∑n

i=1 |S|
i. For a given n and S, the

ratio CR is defined as m/N where m is the maximum number of passwords for which

AMG can generate mnemonics.
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To measure CR, for a given n and S, we need to be able to measure m. m is

dependent on factors such as the size of the corpus, the nature of the corpus, the size

of the WordNet. This makes it difficult to measure m accurately without having to

exhaustively enumerate all the passwords that our system can support. Exhaustive

enumeration is computationally expensive for large values of m and n (it is equivalent

to a cracker using brute-force to crack a password). Hence, we resort to sampling

to obtain an estimate of CR. We randomly generate k passwords and test whether

AMG can generate mnemonics for the generated passwords. The ratio k′/k is then a

probabilistic estimate of CR, where k′ is the number of passwords for which AMG is

successful in generating mnemonics.

We perform two sets of experiments, one for n = 6 and another for n = 7. For

both experiments, we generate passwords that contain only lower-case characters.

In each experiment, we randomly generate a sample of k = 1000 passwords and

obtain k′ using three different encodings (1st letter, 2nd letter and 3rd letter) to

obtain mnemonics. The Best-coverage encoding is the union of the results of the

three encoding schemes. The size of the core-corpus used was extremely small – 1000

sentences. Figure 2.3 plots the measure of success of AMG in generating mnemonics

for both the experiments. Even with such an extremely small core-corpus, our system

is able to achieve a coverage ratio of 80.5% for six-character passwords and 62.7% for

seven-character passwords.

2.5 Related Work

In this is section, we discuss related work that either share or could be potentially

used towards realizing the same broad goal as ours i.e. making password system more

usable.
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Fig. 2.3. Coverage plots for (a) six-character, and (b) seven-character passwords.
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2.5.1 Graphical Passwords

The lack of usability in text password systems and the resultant reduction in secu-

rity has led researchers to propose alternate authentication schemes such as graphical

passwords. Graphical passwords leverage the fact that pictures are easier to remem-

ber than text [26–28]. In general, graphical password schemes can be divided into

two categories: recognition-based and recall-based schemes.

Recognition-based schemes such as PassfacesTM [29, 30] and Deja-Vu [16, 31]

leverage the proficiency of human beings in recognizing previously seen images [16,32].

However, as Davis et. al. [13] found out, user choice in such systems could lead to

passwords that have much lower entropy than the theoretical optimum, and in some

cases, are highly correlated with the race and gender of the users.

Recall-based schemes require users to precisely recall a sequence of strokes or

points on pictures. For example, Jermyn et al. [14] describe a scheme where a pass-

word consists of a series of lines drawn by the user using an input device (for example,

stylus). By decoupling the temporal order in which the lines are drawn from their

positions, they observe that they can produce interesting password schemes that are

at least as secure as the text passwords while being easier to remember.

Graphical passwords are a promising alternative for text-based password systems

in the future. However, as studies by Davis et al. and Thorpe et al. [33, 34] suggest,

graphical password technologies are not mature enough to be deployed immediately.

Text-password systems with enhanced usability (using systems such as ours), could

serve as a viable alternative until such technologies become ready for widespread

deployment.

2.5.2 Password Generators

Commercially available tools such as PasswordGeneratorTM [35], [36] use a series

of ad-hoc techniques to help users generate secure and memorable passwords. As far

as we know, there has been no study done on the security and the memorability of the
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passwords generated by these tools. Also, there has been no study to test the ability

of such tools to generate a large number of passwords. The ability to cover a large

password space is important because otherwise a cracker could brute-force through

all the possible passwords generated by such a tool.

Mnemonic Generators

Research by Raskin et. al. [37] and the mnemonic-password generator from [38]

are the closest to our work. As far as we are aware, those are the only two attempts,

other than our work, at generating mnemonics by leveraging Natural Language Pro-

cessing algorithms. Raskin et. al. [37] try to automatically generate “humorous”

verse to help remember passwords. While humorous verse is a potentially effective

way to remember passwords, automatic generation of humorous verse is a daunting

challenge. Existing tools for automatic humor generation do not scale well enough to

encode a large password space. For example, Raskin’s system can generate mnemon-

ics for passwords that consist of eight characters chosen from a Latin character set

(a-z). The main reason for this limitation is the dependence of this system on a

hand-written rule for generating new verses (which allows it to run without taxing a

heavy computational burden on the system that runs it). Our system can be easily

extended to handle arbitrary password length and is capable of handling passwords

with characters from an arbitrarily large character-set.

Very little public documentation is available for [38]. Their system automatically

generates a series of <password, mnemonic> tuples some of which could be appealing

to an user. Similar to our system, they maintain a set of sentence templates internally.

However these templates are more generic as they are strings of part-of-speech tags,

e.g., “<noun>’s <verb> <adv>, <conj> <noun>’s <verb> <adv>”. For each

token in the set of templates, a set of words are maintained internally as possible

mnemonics. For example, <noun> could be associated with Mark, Dan, Gene, Snake

etc., Every time a user requests a password to be generated, the system randomly
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picks a sentence template and for each token in the template, randomly chooses a

word associated with the token. Each word acts as a mnemonic for a character in

the generated password. For example, the template “<person>’s <noun> <verb>s

<person>’s <adj> <noun>” could be used to generate the sentence “Mark’s canary

illustrates Dylan’s ninth haddock” which encodes a password “MciD9h” [39]. The

following differences highlight the advantages of our system over [38]:

• Sentence templates: Our system automatically generates the sentence tem-

plates from an existing text corpus whereas [38] depends on a manually created

template corpus. Using an existing corpus has the following advantage: The

generated mnemonics look more “real” and have a greater variety as opposed

to the “manufactured” feel of the sentences generated by [38].

• Semantics of the generated mnemonics: By virtue of using a text-corpus,

the mnemonics generated by our system have richer semantic content than those

generated by [38].

• Extensibility: Because of the ability to generate syntactic and semantic vari-

ants of the sentences from the text-corpus, our system can be easily extended to

generate memorable mnemonics for a larger set of passwords and for passwords

of arbitrary length.

2.5.3 Automatic Story Generation Systems

Automatic story and prose generation are classical problems studied in the fields

of Artificial Intelligence and natural language generation respectively. Stories gen-

erated by automatic story telling machines could be potentially used as mnemonics.

However, existing automatic story generation tools [40–42], were not designed with

our needs in mind and hence are not directly applicable in our context because of the

following reasons:
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• Interactivity: Most of the story generation systems are interactive and are not

completely automatic. We need to be able to automatically generate stories.

• Lack of semantic variability: The story generation systems do not generate

plot-lines for the stories by themselves from scratch. The plot-lines and most of

the information needed for narrating a story is available to the generation sys-

tems in the form of a knowledge base. Unfortunately, all the systems we know

of are research prototypes that were built to demonstrate the effectiveness of

the story generation procedure itself. Hence their knowledge bases are often

extremely limited. Because of this limitation, the stories generated are often

repetitive and “mechanical” in nature. This not only severely affects the mem-

orability of the generated stories, but also limits the number of unique stories

generated and hence the number of passwords covered.

2.6 Summary

We propose an automatic mnemonic generating system to make text-password

systems more usable. Our system helps users remember crack-resistant passwords by

automatically generating mnemonics. We discuss the issues that arise while trying to

encode passwords using mnemonics. We evaluate our system and initial results indi-

cate that automatic mnemonic generation is a very promising approach for infusing

usability into text-password systems.

The most appealing feature of our core-corpus is that the sentences contain ap-

pealing semantic information that make them highly memorable. Semantic variants

of a sentence might be less memorable than the original sentence. However, syntactic

variants are very attractive since they retain the semantic content and hence the same

level of memorability. Similar to the generation of semantic variants, it is possible

to generate syntactic variants of every sentence using Natural Language Generation

(NLG) techniques. Once a sentence is parsed and is represented using an abstract

text representation, the flexibility of the abstract representation allows us to generate
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many syntactic variants of the same semantic content using grammar rule engines

like RealPro.

While generating semantic variants of sentences in our core-corpus, we rely on

part of speech information as indicators of senses of the words. It is also possible to

incorporate the ability to perform word sense disambiguation at a finer granularity

than past of speech for improving the mnemonic generation quality. Existing tools

such as [43] can be used to leverage the performance of the current system.

The headlines used in the core-corpus are short in nature. Hence, the length of

the passwords that can be encoded using the headlines is limited. There is a need for

exploring ways to generate memorable natural language text that can encode longer

passwords.

Unlike coverage, there are no objective measures for memorability. User trials

may be used to prioritize the mnemonics generated by the system with respect to

their memorability.
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3. SECURE AND RE-USABLE MULTIPLE PASSWORD

MNEMONICS

Research on password authentication systems has repeatedly shown that people choose

weak passwords because of the difficulty of remembering random passwords. More-

over, users with multiple passwords for unrelated activities tend to choose almost

similar passwords for all of them. Many password schemes have been proposed to

alleviate this problem, but they either require modification to the password entry and

processing infrastructure (e.g., graphical passwords) or they require the user to have

some trusted computing power (e.g., smartcard-like portable devices, browser plug-

ins, etc). We propose a scheme that is applicable to any existing system without any

modification, as it does not require any form of involvement from the service provider

(e.g., bank, brokerage). Nor does it require the user to have any computing device

at hand (not even a calculator). Our approach consists of generating a mnemonic

sentence that helps the users remember a multiplicity of truly random passwords,

which are independently selected. The scheme is such that changes to passwords do

not necessitate a change in the mnemonic sentence that the user memorizes. Hence,

passwords can be changed without any additional burden on the memory of the user,

thereby increasing the system’s security. An adversary who breaks one of the pass-

words encoded in the mnemonic sentence does not gain information about the other

passwords. A key idea is to split a password in two parts: One part is written down

on a paper (helper card), another part is encoded in the mnemonic sentence. Both of

these two parts are required for successfully reproducing the password, and the pass-

word reconstruction from these two parts is done using only simple table lookups.

Passwords’ renewal requires only the re-generation of the helper card. Our scheme

resolves the apparent contradictory requirements from most password policies: That

the password should be random, and that it should be memorized and never written
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down. This makes possible passwords that are more secure against an adversary who

illicitly gains access to the password file, as a dictionary attack is now unlikely to suc-

ceed (the attacker now needs to carry out a more daunting brute force enumerative

attack). Even if the adversary somehow obtains the helper card, it gets quantifiably

limited information about the passwords of the user (so the helper card may be lost or

stolen without disaster immediately striking the user). We quantify the time period

required for this adversary to successfully crack the password.

3.1 Introduction

Speaking at the opening of the 2005 AusCERT conference, Microsoft’s Jesper

Johansson said that “companies should not ban employees from writing down their

passwords, because such bans force people to use the same weak password on many

systems.” In [44] Schneier provocatively suggests to users, “write down your pass-

words”, in agreement with Johansson, and adds that people “are much more secure if

they choose a password too complicated to remember and then write it down” , since

“we are all good at securing a small piece of paper”. This is because the probability

of the above mentioned sheet of paper compromising the password is much lower than

the probability that a weak password will be exploited by an adversary.

In this thesis we show that one can actually write something that is (to the user)

a complete description of the password, yet is of little value if the sheet of paper

is lost or stolen or otherwise compromised. Our approach is to complement the

written sheet of paper (henceforth referred to as the helper card) with an unwritten

mnemonic sentence, thereby making what is written on the helper card more cryptic

in case it is lost or stolen. In other words, both card and mnemonic sentence are

needed for reproducing the passwords; as the mnemonic lies between the user’s ears,

it provides the security commonly categorized as “something you know”, whereas

the helper card provides the security categorized as “something you have”. We also

describe a mnemonic sentence generation mechanism such that an adversary who
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Fig. 3.1. Helper card and a password lookup: The user reconstructs
the desired password (e.g., for “amazon”) in two steps: i) copying
part of the password written in clear text (e.g., “T-?4”) ii) looking
up the rest of the password from the table by using the letters of the
mnemonic word (e.g., “birth” in this case) which are indexed by the
letter positions given in the first column (e.g., the first, the fourth,
the third from last and the last letters of the mnemonic word). Note
that the helper card does not have any markings, the highlights in the
figure are inserted for the sake of narrative clarity. Every word that is
longer than 4 letters are mnemonic words, and are used in the same
order to decode passwords (e.g. “birth” encodes the first password,
“ice-cream” encodes the second password on the card)

breaks one of the passwords does not gain additional information about the other

passwords even with access to the helper card. Overall our approach does not reduce

the security of the existing password authentication infrastructure, it provides a more

secure alternative for the users who write down their random passwords.

Before plunging into the details, we briefly mention the challenges we had to

overcome, and give a glimpse of our approach to them.
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• Using the same mnemonic for multiple passwords, in such a way that one pass-

word’s compromise does not translate into another password’s compromise. The

highly structured nature of natural language text, and its known statistical

properties, stood in the way of achieving this goal. In a nutshell, we “decou-

pled” passwords from each other by using only a subset of English: Rich enough

to prevent an adversary’s enumeration of all possible mnemonics, yet restricted

enough that it does not have the above-mentioned drawbacks. For example,

the existence of a password that can be encoded with the word “ink” does not

imply a more likely existence of another password that can be encoded with the

words “paper” or “pen”. This requirement turns out to be surprisingly easy

to implement, by independently selecting the mnemonic words from each other

and later using these words to construct the mnemonic sentence.

• Achieving easy user reconstruction of a password from the helper card and

the mnemonic, without any access to a portable computing device (not even a

simple calculator). In our system the user makes one simple table lookup per

encoded password letter while reconstructing the password. Refer to Figure 3.1

for an example of the helper card table used in this kind of lookup.

• Generating mnemonic sentences that have both desired properties (of being

memorable and having the required encoding capacity). Here is an example:

“The birth of ice-cream: Why and how we sneeze at midnight.” We achieved

this by carrying out judicious word-substitutions on a sentence drawn from the

news headlines. We used newspaper headlines since they summarize a story,

thus form a connected discourse, which was experimentally shown [18] to be

much easier to learn than same amount of nonsense. We will explain how later,

for now we merely mention that we do this, guided by the distance between

words as reported in WordNet [45].

We will first give a usage scenario in Section 3.2 leaving out the discussion of the

details that are transparent to the user. Then in Section 3.3 we will discuss the details
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Fig. 3.2. Mnemonic System: The computational parts.

that pertain to the construction of the helper card, the encoding of random strings

using a limited vocabulary of words and the generation of natural language sentences.

Finally, in Section 3.5, we include a survey of related work in password authentica-

tion and with analysis of their impact on our work as well as their similarities, and

differences from our work.

3.2 Mnemonic Usage

In this section we describe a typical scenario of mnemonic password usage.

The life cycle of a mnemonic password (Figure 3.2) starts with selection of a

mnemonic sentence by the user. The system generates a set of mnemonic sentences,

from which the user picks one sentence that is easier to remember and memorizes this

sentence. A mnemonic sentence W contains k mnemonic words W1, . . . , Wk, each of

which are of length ≥ m.

Later, the user is assigned a set of l random passwords, P = {P1, . . . , Pl}, by third

parties (e.g., banks, brokerages, online shops, school or work accounts, etc.) or the

user picks some or all of the passwords. Each of these passwords are composed of

≤ n password symbols, Pi = (pi,1, . . . , pi,n).

The system then constructs a lookup table by using P and W, and this table is

printed on a card (the size of a credit card for convenience) as in Figure 3.1. We refer

to this lookup table as helper card. The user keeps the helper card secure, preferably

along with credit cards in the user’s wallet.
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When the user wants to remember Pi = (pi,1, . . . , pi,n), the user does the following:

1. finds the ith table in the helper card. This table has two parts, a string Gi and

a table Ti (e.g., G1 is T-?4 in Figure 3.1).

2. types Gi, which is the first n − m symbols of the password (pi,1, . . . , pi,n−m)

printed in clear on the helper (possibly Gi = ∅, if desired).

3. retrieves Wi from memory (e.g., W1 is the word “birth” in Figure 3.1).

4. derives the remaining symbols of the password pi,n−m+j by i) finds wi,j by re-

trieving the mnemonic letter pointed by the index value stored in the first

column of jth row ii)looking up wi,j in the jth row of Ti (e.g., the first encoded

symbol of the “amazon” password is decoded using “b”, the 1st letter of the

word “birth”).

Password Changes: The passwords that are assigned to the user can change,

and the user need not change the mnemonic; only the table of the helper card that

corresponds to the changed password needs to be reconstructed.

Lost Helper: As we noted earlier, the user needs to keep the helper card secure.

However, the helper card may be lost or stolen - without disaster immediately striking

the user: the user has a limited but known amount of time before a password in the

helper card can be compromised. This secure time period is ensured by the encoding

of the password on the helper card; the adversary will likely have to perform a known,

large number of brute force login trials before successfully compromising the system.

As soon as it is known that the helper card is lost or has been copied by an adversary,

the user needs to change all the passwords and generate a new helper card to remember

them, however the user does not need to change the mnemonic.

Compromised Password: A very important property of password mnemonic

sentences are their resilience against an adversary that has compromised one of the

passwords. It is possible that one of the passwords is compromised by an adversary

without the information of the helper, e.g., by catching user’s keystrokes. Since the
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passwords are independently generated from each other the rest of the passwords

cannot be compromised. However, in the case which the adversary also has access to

the helper, the compromise of Pi will leak information about Wi. In a normal English

sentence, such knowledge would reveal other words, e.g., the word “ink” is usually

used in the same sentence with words “paper” or “pen”. This would have disastrous

consequences since the adversary would learn the passwords encoded by those words

for free. In order to rule out such situations, the mnemonic is constructed in a way

that Wi will not leak information about any other part of the mnemonic; hence the

adversary gains no additional information about the rest of the mnemonic or the rest

of the passwords by compromising Pi (more on this in Section 3.3).

3.3 Behind the Scenes

This section discusses details of the system that pertain to the parts that do not

involve user interaction: The computation of helper cards’ content, the generation of

candidate mnemonics.

3.3.1 Passwords and Helpers

We first discuss the relationship between the input (i.e., the password) and the

outputs (i.e., the mnemonic and the helper card) in the computational parts of

the mnemonic system. As noted earlier, the requirements of our multi-password

mnemonic system for helper card and mnemonic sentence are: i) both the mnemonic

sentence and the helper card are needed to reconstruct the password, ii) this recon-

struction of the password can be performed by the user without computational aids,

using table lookups.

We now make a brief digression to discuss why the simple “secret splitting” idea

from cryptography is not suitable for our purpose. Recall from [46] that to split a

secret password P, into two you (i)pick a random Rs , (ii)create the two parts as Rs
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(a random seed), and E(P, Rs). There are several problems with this approach in

our application:

1. The Rs (the mnemonic sentence) can not be a random string as it has to be

memorable to the user.

2. The decryption of P is not possible for a human to perform without a compu-

tational aid.

Replacing in the above E(P, Rs) by P ⊕ Rs, where ⊕ is the bitwise exclusive-or

operator, makes it moderately doable by a computer-less human, but has the severe

drawback that compromise of one password automatically reveals Rs as well as all

the other passwords. Our system uses a different Rs for each password to alleviate

this problem.

Note that, P⊕Rs would not leak any information about either of Rs or P without

the knowledge of the other, hence P ⊕ Rs can be made public. However, Rs, which

needs to be kept secret, is still a random string, and is not easier to memorize than

the password P itself. We achieve memorability of Rs by a process called “mnemonic

generation”, which is the conversion of Rs into an easy to remember human language

sentence (e.g., English). The details of mnemonic generation is given in Section 3.3.3;

in summary, our system first finds a set of words that encode each Rs (every P will

have a different one), then generates sentences by picking one word from each of these

sets with the help of natural language generation techniques.

Random Number

 Generator R S

(random seed)

Mnemonic

Search

1. The birth of ice-cream: Why do we ….

2. Piranhas are occasionally friendly …

….

….

Mnemonic Set

W
(mnemonic)

Fig. 3.3. Mnemonic Generation and Selection: Initial selection of
the mnemonic sentence involves the users, since memorability of a
sentence depends on individual experiences and tastes.
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Mnemonic generation (see Figure 3.3) is the task of creating a candidate set of

easy to remember sentences that can encode a given random seed string. Mnemonic

generation concludes with the user’s selection of one of the candidate mnemonic

sentences for remembering as a mnemonic.

Let Rs be the random seed that generated the candidate mnemonic set and let

the mnemonic chosen by the user be W.

The computation of the mnemonic sentence from the Rs uses an encoding of

the Rs as words in a vocabulary; the details of this encoding will be discussed in

Section 3.3.3. Let us refer to d() as the corresponding decoding function that can

derive Rs from W, such that d(W) = Rs, and refer to e() = d−1() as the encoding

function. Note that Rs is different from a password, it is a seed that is used internally

by the mnemonic system to produce the candidate set of mnemonic sentences that

encode Rs, and is also transparent to the user.

After the mnemonic generation and selection of W as the mnemonic, a password P

is needed to proceed to the helper construction task. Since the mnemonic is selected

without the knowledge of password, an adversary who learns the password at this

step will not have any information about the mnemonic. Also if an adversary learns

the mnemonic, this information will not reveal the password.

Let Rh be the result of Rs ⊕ P . Since both Rs and P are random strings Rh

will also be random. One can compute P using Rs and Rh from P = Rs ⊕ Rh, or

P = d(W) ⊕ Rh. In order to be able to perform this operation by hand we choose

our decoding function such that pi = d(wi) ⊕ rh,i as well as rs,i = d(wi) hold: P can

be reconstructed by decoding it symbol by symbol.

Helper construction is the task of building a lookup table that can perform

lookup(i, wi) = d(wi) ⊕ rh,i by looking the ith mnemonic letter, wi, in the ith row

of the table. The password is the concatenation of the successive table lookups for

the mnemonic letters in the mnemonic, P = (lookup(1, w1), . . . , lookup(n, wn)). An

example of helper card lookup was given in Section 3.2. We will discuss the details

of the encoding function in Section 3.3.2.
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3.3.2 Encoding with Word Sets

Mnemonic generation (see Figure 3.3) is the task of creating sentences that encode

a set of random seed strings. In this subsection we will discuss how to find an encoding

function and in the next subsection we will describe the generation of mnemonic

sentences from word sets.

Let V be the vocabulary of words that our mnemonic sentences will use, Wi ∈ V ,

and let Q = {0, 1, . . . , |Q| − 1} be an alphabet, let S be the i.i.d. set of all strings of

length m defined on Q, S = {x : x ∈ Qm}, and Rs ∈ S.

In order to efficiently use the memory of users, we should find an onto decoding

function that maps V to the largest possible random string set (i.e., maximize the

size of S, |S|) in a given number of lookup operations, m.

Let N be a sequence of letter indices, such that length(N) = m. Let dN : V → S

be a desired decoding function. dN can be computed from individual letters of its

input as indexed by N using m mapping functions dN,i : {a, . . . , z} → Q, such that :

∀v ∈ V, dN(v) = (dN,1(vN [1]), . . . , dN,m(vN [m])).

In our implementation we performed a heuristic search to obtain a decoding

function that maximizes |S| for a given |Q|. See Table 3.3.2 for statistics of the

results of our implementation for different |Q| values when N is a subsequence of

(1, 2, 3, 4,−4,−3,−2,−1). Note that negative values in elements of N refer to posi-

tions counting from the last letter backwards. The resulting |S| is very small compared

to the size of the dict file, this is because we have limited our Rs to be i.i.d. in Qm.

It is possible to achieve |S| relatively closer to 26m, which is the maximum number

of strings of length m that can be constructed using English alphabet, if we allowed

Prob(Rs) = 0 for some Rs ∈ Qm. We have excluded this case from the scope of this

chapter, for the sake of simplicity. The number of passwords that can be covered in

this case can be trivially computed by finding out the number of unique substrings

that the vocabulary yields using N . If we use N = {1, 4,−3,−1}, thes same word

list used to compute Table 3.3.2 yields 67, 717 unique substrings.
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The recommended mode of use for our system is not to use more than one letter

from a given word to encode a password: we recommend the ith password be encoded

in the N [i]th letters of the mnemonic words. This is different from what we are

describing in the rest of the chapter the sake of simplicity of description, as well

as of practicality (as it may be more cumbersome to go through many words from

memory, than to remember only one). The algorithm that computes N ensures that

each password symbol encoded by a word is independent of the next password symbol

encoded by the same word. Therefore, when the recommended mode of use is adopted,

if a password is compromised, the adversary will not be able to infer any information

about the rest of the password symbols.

We then used lookup(i, v) = (dN,i(vN [i]) + zN,i) mod |Q′|, where (zN,i + wi)

mod |Q′| = pi and Q′ is the alphabet from which P is derived (e.g., Q′ is the set of

printable ASCII characters in most UNIX systems). A helper card constructed this

way decodes the ith mnemonic letter, wi (which is the N [i]th letter of the mnemonic

word), into the ith password letter, pi. Note that, the same dN,i is used for every

mnemonic word in Figure 3.1, only zN,i values are different, therefore corresponding

rows of different helper tables share the same mapping pattern. For instance the

mnemonic letters “h,i,j” always map to the same password letter in the 1st row.

The time required to break a password when the helper card is lost, depends on

the size of domain of the encoding function we use, |S| = |Qm|. If t is the time that it

will take the adversary to try 1 password for login, on the average it will take |Qm|×t

2

units of time to break one password using the helper card.

3.3.3 Mnemonic Generation

Recall that our system starts with generating a set of random seeds which will be

used to conceal passwords in helper cards. Let Rs = (Rs,1, . . . , Rs,k) be the list of k

random seeds that were generated for the user, which can be encoded in a mnemonic

sentence that has the capacity to remind up to k passwords. In Section 3.3.2 we have
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Table 3.1
Decoding function: The results of our heuristic search algorithm
to find decoding functions. The input vocabulary was 353056 al-
phabetic strings from the Linux dict file that are longer than
3 letters. The index sequence from which N is computed was
(1, 2, 3, 4,−4,−3,−2,−1), and the program was run for alphabet sizes
ranging from 3 to 10. The program found an encoding that can map
elements from a domain set of 6561 random strings to strings in dict

file, and has a decoding table that requires 4 lookups.

Size of Number of Number of Mnemonic Letter

Alphabet Lookups Passwords Positions

|Q| m |Qm| N

3 7 2187 1,2,3,4,-4,-3,-1

4 6 4096 1,3,4,-4,-3,-1

5 5 3125 1,3,-4,-3,-1

6 4 1296 2,4,-3,-1

7 4 2401 2,4,-3,-1

8 4 4096 1,4,-3,-1

9 4 6561 1,4,-3,-1

10 3 1000 1,3,-3
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described an encoding function that maps random strings into sets of vocabulary

words, Wi = e(Rs,i) .

In this section we will describe how our system generates sentences by picking one

word from each word set Wi with the help of natural language generation techniques.

In order to achieve memorability of the generated sentences we use a large corpus

of newspaper headlines as template sentences: while doing the best effort to maintain

the original meaning of them, we modify them through word substitutions to contain

a subsequence (W1, . . . , Wk) where Wi ∈ Wi. Sentences that our system generates

are usually easy to memorize, since the templates that we use have been curated by

newspaper editors to summarize stories thus form a connected discourse, which was

experimentally shown [18] to be much easier to learn than same amount of nonsense.

Let L be a template sentence from our corpus, where Ls = (l1, . . . , lk) are the words

that our system uses for word substitutions. In order to preserve the attractiveness of

the original sentences, we employ a heuristic search for substitutions which minimizes

the maximum value of δ(li, Wi), where δ is a function that quantifies the similarity of

the input words.

In our implementation we used the path function that is part of the

WordNet::Similarity [47] library as our similarity function δ. path returns the

length of the shortest path of “is-a” relationships between two concepts in Word-

Net [45].

Let us use an example to demonstrate the search for a good substitution word,

where l1 is the template word “newspaper” and W1 = {mirror, letter} are the words

that encode our desired random string. The word “letter” would be preferred by our

system to substitute the word “newspaper”, because δ(newspaper, mirror) is 8 and

δ(newspaper, letter) is 6 (“newspaper#n#1” denotes the 1st noun sense of the word

“newspaper”):

• Shortest path between “newspaper” and “mirror”:

“newspaper#n#1 press#n#3 print media#n#1
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medium#n#1 instrumentality#n#3 device#n#1

reflector#n#1 mirror#n#1”

• Shortest path between “newspaper” and “letter”:

“newspaper#n#3 product#n#2 creation#n#2

representation#n#2 document#n#2 letter#n#1”

As we have noted before, if the adversary compromises the helper card as well as

the password Pi, the set of mnemonic words from which Wi is picked can be easily

revealed. This would have disastrous consequences about the security of the rest of

the words in the mnemonic sentence, since natural languages have a regular structure.

In our approach, W is derived from Rs which is randomly generated. Even if the

adversary learns one of the sets Wi used in the mnemonic sentence, this will not leak

information about the rest of the mnemonic words.

Our approach resembles synonym substitution based sentence generation used by

several security applications [48–51]; we include a review of these applications in

Section 3.5. In these applications a given sentence is converted to a new sentence by

changing its words with one of their synonyms.

3.4 Security and Usability of Mnemonics

In this work, we have used mnemonics to encode a secret string which is then

used to conceal the real password through a secret-sharing mechanism. The security

of the password is dependent on the strength of this string against an adversary

who performs brute-force cracking. The length of the mnemonic string is a direct

contributor to the security of the mnemonic in this respect: as it dictates the length

of the secret string. On the other hand, the user may find it hard to remember a

long mnemonic sentence, and resort to practices that may compromise the passwords,

such as writing down the mnemonic sentence.
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A desired mnemonic system should allow the use of shorter mnemonic sentences

even though it means lowered security. The challenge for multiple-password mnemon-

ics is that, there are less letters in the mnemonic to distribute to different passwords.

Our system allows the use of shorter mnemonic sentences for encoding multiple

passwords. Recall from the example in Table 3.3.2 that the encoding function allowed

us to encode up to log2 9 bits per letter when we used 4 letters per word in the

mnemonic sentence to encode passwords. The system will need to distribute these

letters to each password of the user, when the passwords are selected. If the user

chooses to use a mnemonic of 4 words, which has 16 mnemonic letters, these letters

can be used to encode all characters of 2 passwords of length 8. Alternatively, the

same mnemonic can be used to encode 4 characters of 4 passwords, where the other

4 characters are written in clear in the helper card. One could concievably choose

the encoding function, from the second row of Table 3.3.2, that uses 6 letters from

each mnemonic word. However, this encoding function is inferior to the one in our

discussion, because it can encode only log 26 bits per letter; hence it provides less

security, but still requires more steps to decode the password from a mnemonic of the

same length. Therefore, we use the encoding function that packs the largest number

of bits for each mnemonic letter.

The length of the mnemonic sentence can be adjusted in a trade-off between

the usability and security. The security that the mnemonic provides increases by

a constant number of bits with the addition of another mnemonic word. It is not

clear how the memorability of the mnemonic reduces with this change. However, one

should expect that the decline is usability should depend on the individual user, and

beyond a certain mnemonic length, the usability diminishes for all the users.

We envision our system to be used for passwords that the users use infrequently

and still require a high security; both memorability of the mnemonic and the security

of the passwords are important. As we have qualitatively demonsrated above, these

two are competing goals and they balance on a trade-off. If the security emphasis is

paramount the mnemonic should be chosen long enough such that all the password
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letters are encoded in the mnemonic sentence, i.e. each password letter is derived

using a table lookup from the helper card. If the implementation requires a higher

usability, our system mitigates the security implications for a brute-force adversary

by choosing a longer password, but writing some part of this password in clear text

on the helper card. However, the portion of the passwords encoded in the mnemonic

sentence cannot be too small, for the reasons discussed in the previous sections.

3.5 Related Work

Morris and Thompson have studied the vulnerabilities of the initial UNIX pass-

word scheme in 1979, and found out that 86% of the passwords they have collected

were easily cracked in a day during an exhaustive but intelligent search of the pass-

word space [52]. They identified several improvements to UNIX password system,

including the use of DES encryption and the enforcement of longer password, so that

an automated attack would suffer from a longer running time.

In 1989, Feldmeier and Karn revisit the password authentication problem in

UNIX [3]. This time they are armed with faster crypt function implementation that is

used is encrypting passwords in password files, as well as faster and cheaper comput-

ers. They suggest facilitating of shadow password file as opposed to public password

file, as a first measure to defend the passwords. However they point out that the

ultimate password protection is picking passwords that are hard to guess by an au-

tomated brute-force attacker. They recognize that the usability is a barrier against

forcing users to remember long random passwords. Giving Shannon’s results for

per-character entropy of English, they suggest that a 5-10 word English sentence

will embody an entropy required in an 8 character password. The users of these

passphrases will XOR each 8 character block of their passphrase and use the result

as their random password.

The passphrase system suggested by Feldmeier and Karn could be implemented

easily. However the number of key strokes required at every authentication would
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render this passphrase hard to use for frequent authentication. For this reason they

suggest distributed authentication systems such as Kerberos tickets to be used in con-

junction with the passphrase system for decreasing the overall number of keystrokes

and the additional burden of remembering multiple password phrases as a usability

fix. Moreover the authors suggest frequent changes of passwords to increase the dif-

ficulty of cracking passwords. They identify the complexity of the users’ password as

the major security requirement.

In 2004, Yan et al. conducted a controlled experiment to compare the effects

of giving three alternative forms of advice about password selection [12]. This trial

involved 400 first-year students at Cambridge University. 100 of these students were

given the classical instructions on how to pick a password: “ Your password should

be at least seven characters long and contain at least one non-letter.” 100 of them

were given a paper that has the letters A-Z and integers 1-9 repeatedly on it, and

they were asked to close their eyes and randomly pick symbols from this letter to

generate a random password, later they were asked to write it down and carry that

paper with them until they memorize the password. The other 100 students were

given an instruction sheet that explains how to generate mnemonic passwords. The

last 100 were not given any instructions at all. Yan et al. performed several well-

known attacks on these passwords, as well as analyzing the statistical properties of

these passwords (e.g. length) and the frequency of the users’ need for a password

reset.

This study challenged several widely accepted beliefs about security and memo-

rability of passwords:

1. It is confirmed that users have difficulty remembering random passwords (Many

students continued to carry the written copy of their password for a long time,

4.8 weeks on the average.).

2. The results also confirmed that mnemonic passwords are indeed harder for an

adversary to guess than naively selected passwords.
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3. Contrary to the popular belief that random passwords are better than mnemonic

passwords, this experiment showed that mnemonic passwords are just as strong

as the random passwords.

4. This study also showed that it is not harder to remember mnemonic passwords,

which are just as memorable as naively selected passwords.

5. Another interesting result of this study is that it is not possible to gain a sig-

nificant improvement in security by just educating users to use random or

mnemonic passwords; both random passwords and mnemonic passwords suf-

fered from a non-compliance rate of about 10% (including both too-short pass-

words and passwords not chosen according to the instructions).

The lack of compliance of users can also be explained with the lack of incentive.

User incentive can be created by refusing non-compliant passwords or by providing

an easy to use authentication scheme, or by bundling small incentives from several

systems into a large incentive. In our system, we provide encouraging incentives to

the users for complying with our instructions (e.g., keeping the helper card secure).

Some of the user incentives we provide are as follows:

• providing the users with a facility that they can also use secure passwords

for their personal (non-work) online accounts, since one mnemonic can encode

multiple passwords. This way the users will have a good reason to keep the

helper cards secure.

• allowing the users to pick the mnemonic sentences that fit to their taste, hence

are memorable to them, from a set of mnemonic sentences generated by the

system.

• providing a password reset mechanism that does not require the reseting of the

mnemonic.
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The reward is high in a system that is usable for multiple passwords. A uniform

interface (e.g. helper card) will attract users, because repetition across different

systems will bring ease of use, and familiarity.

Kuo et al. performed another user study to check whether mnemonic passwords

are vulnerable to dictionary attacks when the dictionary is specifically generated using

the popular phrases available on the Internet such as advertising slogans, children’s

nursery rhymes and songs, movie quotes, song lyrics, etc. [53]. Even though 65% of

the mnemonic phrases picked by the users can be found by a Google search, only 4%

of the mnemonic passwords, that the users generated, was cracked by a brute force

attack using a special dictionary generated by deriving mnemonic passwords from

phrases grabbed from popular Internet sites.

A user study by Gaw and Felten showed that users have a tendency to “re-use”

their passwords across multiple accounts [54]. They have interviewed with 49 users.

The majority of these users had three or fewer passwords and passwords were re-used

twice. The top reason mentioned for reusing a password was “easier to remember”.

Results of this study agrees with our motivation to design a system that encodes

multiple passwords with one mnemonic phrase.

In 2005, Jeyaraman and Topkara proposed a system that automatically generates

memorable mnemonics for a given random password [50]. This system is based on

searching for a mnemonic that encodes the given password in a pre-computed database

of mnemonics, which is generated by taking sentences from a text-corpus and pro-

ducing syntactic and semantic variations of these sentences. In order to produce the

variants of corpus sentences, they used linguistic transformations (e.g., synonym sub-

stitutions). This system was able to generate mnemonics for 80.5% of 6-character

passwords and 62.7% of 7-character passwords containing lower-case characters (a-z),

even when the text-corpus size is extremely small (1000 sentences). Even though this

is a very important first step in developing secure mnemonic password systems, it

was limited in providing following items:
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• Generating mnemonics that can encode symbols that are not lower-case char-

acters

• Encoding multiple passwords with one mnemonic sentence

• Encoding long passwords

There are several other studies that use synonym substitution as a technique for

information hiding into natural language text. Natural language information hiding

systems, that are based on modifying a cover document, mainly re-write the docu-

ment using linguistic transformations. T-Lex is one of the first implemented systems

that embed hidden information by synonym substitution on a cover document [48].

A given message is embedded into the cover text using a pre-generated synonym set

database as follows. First, the letters of the message text are Huffman coded ac-

cording to English letter frequencies. The Huffman coded message is embedded into

message carrying words in the cover text by replacing them with their synonyms in

the synonym database of T-Lex. The synonym sets in this database are interpreted

as a mixed-radix digit encoding according to the set elements’ alphabetical order.

In [51], Topkara et al. introduced a natural language watermarking system that

embeds the watermark message (e.g, copyright notice) into a given document us-

ing robust synonym substitution. Compared to naive synonym substitution, robust

synonym substitution introduces ambiguities in order to make it harder for the wa-

termark embedding modifications to be undone. This scheme first selects a subset

of words from a given dictionary, and later assigns colors to these words, where the

colors are used to represent the role of the word in embedding the watermark, such as

“carries 0”, “carries 1” or “non-encoding”. A secret key, shared between watermark

embedder and watermark reader, is used for both the subset selection and the color

assignment of the words. When there are many alternatives to carry out a substitu-

tion on a word (i.e. more than one synonym carries the required embedding bit), they

prioritize these alternatives according to a quantitative resilience criterion and favor

more ambiguous alternatives. For example, if the original sentence is “he survived
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without water and food for 3 days”, this watermarking system rewrites it as “he went

without water and food for 3 days”, since the word “go” is more ambiguous (i.e. has

many different meanings). The approximately meaning-preserving changes, that are

done in the direction of more ambiguity, are harder for the adversary to resolve with

automated disambiguation, however, a human reader can quickly disambiguate the

meaning when reading the marked text. This system exploits the well-established

fact in the natural language processing community, that humans are much better

than computers at disambiguation [55].

The study of Reverse Turing Tests in [56] suggests a method to ensure that it

will take a pre-determined time to break a password with an automated attack if

the adversary has to use the login system. This is achieved by judicious use of

challenges by the system that require computational capabilities of a human ( e.g.,

CAPTCHAs [57]). Our system can be complemented with a similar system such

that the adversary is even further limited in the time that it is required to break a

password in the helper card. Moreover, if such a system is in use, the number of table

lookups can be adjusted to fit the time that the users need to before the adversary

can break the password.

In another work, Bergmair et al. proposes a Human Interactive Proof system

which exploits the fact that even though machines can not disambiguate senses (i.e.

meanings) of words, humans can do disambiguation highly accurately [49]. In this

system, the users are shown several “challenges”, where each challenge is composed

of several sentences generated by synonym substitution of a word in the template

sentence. The word that is substituted is replaced with its synonyms from the same

sense in some of the challenge sentences and its synonyms from other senses in the

remaining sentences. The user is asked to mark the sentences that carry the same

meaning. It is expected that they will not pick the sentences that have the substitu-

tions from mis-matching senses. The system keeps the dictionary, that is used to find

the synonyms, secret. This dictionary is augmented with new synonyms by asking

the user about randomly replaced words: if the users frequently mark the sentence
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that has the random replacement as an equal meaning sentence, then this random

word is added to the synonym set of the word that it replaced in the original sentence.

An example of a challenge is as follows, the user is asked to mark the sentences that

are meaningful replacement of others in the following set:

• The speech has to move through several more drafts.

• The speech has to run through several more drafts.

• The speech has to go through several more drafts.

• The speech has to impress through several more drafts.

• The speech has to strike through several more drafts.

To the best of authors’ knowledge the only password scheme that uses a table

lookup technique was employed by a bank in 1992. The customers of this bank

were suggested to conceal their PIN by writing it down on a special piece of square

cardboard that is designed to be kept along with the ATM card. The cardboard

presented a table of 4 rows and 10 columns, each column corresponding to a digit

(0-9). The customer was asked to pick a four-letter word and write the letters of the

word, in consecutive order, to the columns that correspond to digits of their PIN (i.e.

first letter goes to the first row and the column of first digit of the PIN). After this

step, the empty table cells should be filled with random letters. Anderson described

this scheme in [58], where he also mentioned that this cardboard was increasing

vulnerability of the system, since the adversary’s job is now reduced to finding the

four-letter English words (which are not many) in the consecutive rows of the table

and trying the corresponding PIN numbers.

3.6 Summary

We believe that natural language processing is a good technology to use in pass-

word mnemonics, as it offers the multiple advantages that were mentioned over other
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approaches. This work is an important first step in the direction of a single-mnemonic

for multiple passwords with both good security and good usability properties.

The “best use” we recommend for a deployment of our scheme, would include a

policy that sets the passwords’ expiration period (i.e., requiring renewal) to roughly

coincide with the time period required by an adversary, who has misappropriated

the helper card, to carry out an attack using that card: This will ensure that even

users who do not realize that their helper card was stolen, are not unduly exposed

to password compromise. We also note that, in addition to the password renewal

not requiring a change of mnemonic, the renewal process does not burden the users

with the task of choosing a random new password (users are notoriously poor judges

of the quality of randomness): A quality random-password generator can be used

instead. The users do have a say, but where it really matters to them: At the initial

mnemonic-creation time, for the choice of which candidate mnemonic they will have

to memorize (this has to involve the user, as what is memorable for a person is highly

subjective).

While it is clear that a password that is compromised has to be changed, and that

it requires no change of mnemonic, we stress that it is imperative that the mnemonic

be changed if both helper card and password(s) are compromised (the latter possibly

through shoulder-surfing, spyware, phishing, etc).

In order to transfer our system into practice, a user study is needed to adjust the

parameters of our system to fit the comfort of users. The current mnemonic generation

system involves the user only after a candidate set of mnemonics are found. It is also

possible to improve the user experience by incorporating the user’s preferences and

interests to the topic of mnemonic sentences that are generated.
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4. ACCESSIBLE AUTHENTICATION THROUGH

SECURE MNEMONIC-BASED PASSWORDS

In many environments, the input mechanism to a computer system is severely con-

strained. For example, a disabled person may only be capable of yes/no responses

to prompts from the screen (by different nods of the head, eye movements, hand

movements, or even by different thought patterns that are captured by a sensor).

Alternatively, the user may not suffer from any impairment yet the environment pre-

cludes the use of a keyboard or keypad, as happens with tiny portable devices such as

some of the smaller mp3 players, voice sensors at the doors of restricted-access areas,

and hands-free situations such as construction work sites, operation of a motor vehi-

cle, etc. Finally, a case can be made, in situations where shoulder-surfing is prevalent

(such as in crowded cyber-cafes), for deliberately restricting the input to be a response

that is hard to detect by a shoulder-surfer (e.g., left-click vs right-click), even though

the user in such cases has a keyboard and is perfectly capable of using it. Requiring

the user to remember a long random bit string and to authenticate by entering each

bit in the yes/no available input mechanism, is completely impractical. This chapter

deals with the question of authentication in such environments where the inputs are

constrained to be yes/no responses to statements displayed on the user’s screen. We

present a mnemonic-based system for such environments that combines good usabil-

ity with high security, and has many additional features such as (to mention a few)

resistance to phishing, keystroke-logging, resistance to duress and physical coercion

of the user, and compatibility with currently deployed systems and password file for-

mats (hence it can co-exist with existing login mechanism). An important ingredient

in our recipe is the use of a mnemonic that enables the user to produce a long enough

(hence more secure) string of appropriate yes/no answers to displayed prompts (i.e.,

challenges). Another important ingredient is the non-adaptive nature of these chal-
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lenges – so they are inherently non-revealing to a shoulder-surfer or phisher. The

mnemonic is a sentence or a set of words known only to the user and authenticating

server (in the server they are stored in a cryptographically protected way rather than

in the clear) – the users are never asked to enter their mnemonics to the system,

they only use the mnemonic to answer the server’s challenge questions. Our usage

of text for mnemonics is not necessary but it is what we implemented for reasons of

convenience and compatibility with existing login mechanisms; we could equally well

have used speech, video, or pictures.

4.1 Introduction

In 1998, Congress amended the Rehabilitation Act to require Federal agencies

to make their electronic and information technology accessible to people with dis-

abilities [59]. A major focus of the accessibility research is to improve the design of

electronic interfaces in a way that does not prevent users with disabilities (especially

vision) from viewing them or navigating through them [60,61]. There have not been

many studies on electronic accessibility issues for users with motor disabilities [62].

The ability to securely use computer resources and the web provides more freedom

for users with disabilities: It enhances their educational and entrepreneurial opportu-

nities [62], as well as their ability to stay in touch with friends and family, to manage

their finances, or shop online, all without having to rely on other humans to do it on

their behalf (thereby improving their privacy as well).

Many of the deployed regular authentication systems are difficult (even impossible)

to use under the below-mentioned environments, environments that our system is

designed to handle.

• Users with motor-disabilities: Not only paralyzed patients (that have cere-

bral palsy, paraplegia, quadriplegia, etc.), but also users who have rheumatoid
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arthritis or hand tremor 1, or who are temporarily unable to use their hands

(e.g., due to a broken arm or repetitive stress injury).

• Input constrained devices: Authentication using tiny portable devices such

as some of the smaller mp3 players, game consoles, home entertainment systems,

voice sensors at the doors of restricted-access areas, hands-free situations such

as construction work sites, operation of a motor vehicle, etc.

• Inherently non-private environments: Authentication when shoulder-surfing

is unavoidable such as in crowded places (e.g Internet access points, coffee shops,

cyber cafes), in places where there are many surveillance cameras (e.g., labs,

airports, shopping malls, etc.), in tight spaces such as an airplane while sitting

in economy class next to another passenger.

We designed a system that will allow users to own random passwords by remem-

bering just a mnemonic sentence (which they have several choices to pick from), and

these users will be able to securely authenticate themselves by just answering a series

of “yes/no” questions.

This can be achieved without requiring any special input device, or any compu-

tation at client site. The authentication questions are designed in a way that a short

mnemonic sentence can encode a long password. There is no restriction on the size

of the mnemonic sentence or the password, if desired the security (hence the length)

of the passwords can be increased by requiring the user to remember more than one

sentence. Our system is safe against many attacks including shoulder surfing, phish-

ing, and acoustic attack. We use several measures against each type of these attacks

such as displaying one challenge at a time, or displaying the challenges in graphical

CAPTCHA [57] 2 format if the environment allows graphical display. We also achieve

duress resistance, which we will discuss more in the following sections.

1According to International Essential Tremor Foundation, up to 10 million Americans have Essential
Tremor
2stands for “Completely Automated Public Turing test to tell Computers and Humans Apart”
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Our design can work side-by-side with text passwords in UNIX systems. It is also

compatible with pure text based interfaces as well as other media interfaces that can

represent the text mnemonics (e.g. speech, video, pictures, etc.).

Moreover, using text for mnemonics (as opposed to pictures, video or audio) brings

more flexibility to our system, since it is compatible with text consoles and LED

screens. There is no language restriction for our system, it can be implemented for

languages other than English.

Before going into the details of our system, we will briefly mention the challenges

we need to overcome and give a glimpse of how our system approaches them:

• The authentication system would be able to work in input-constrained environ-

ments. Users with motor disabilities can input through switches that can be

activated by simple muscle movements (e.g. raising the eye brow or eye-lid) or

brain signals [63–65]. In order to free these users from the need to ask the help

of another person while authenticating themselves to these systems, one has

to come up with a secure authentication system that is usable by anyone who

can control such a switch. In our scheme, only yes/no answers are enough for

authentication. Of course the ability to provide yes/no inputs makes it possible

to transmit any random bit string but it does not help at all for remembering

which bit string to transmit (even the luxury of writing the password on a sticky

note may not be available to the disabled person). Our scheme, on the other

hand, is mnemonic-based and makes it possible to securely remember a long

random bit string, by remembering only a relatively short sentence.

• Mnemonics have to be easy-to-remember sentences. Users with motor disabil-

ity can be elder people that do not have a very strong memory. Our system

encodes a long random password with a short mnemonic sentence. Besides

that, we use the news headlines as our corpus for generating the mnemonic

sentences. We used newspaper headlines since they summarize a story, thus

form a connected discourse, which was experimentally shown [18] to be much
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easier to learn than same amount of nonsense. Automatically generating easy

to remember mnemonics with video or images is a more challenging task.

• Shoulder-surfing attacks are very hard to avoid by disabled users, who are al-

ways in areas that are crowded (such as hospitals, or care centers) or always

have a second person (e.g., day care nurses) around. Our system has several

measures for protecting the user against shoulder-surfing: i) using mnemonic

based passwords, ii) not asking the user to enter the password directly, but

performing authentication by asking the user a series of “yes/no” questions, iii)

offering a different set of challenge questions at each time of authentication, iv)

making the use of an input device that can be covered possible (such as a mouse

or other haptic device ).

• The authentication system should not require the user to carry an extra portable

device (e.g. calculator) or even a paper and a pen. In our system the user just

reads the challenge statements prompted to him/her at authentication time,

and if the challenge contains one of the mnemonic words the user inputs “yes”,

otherwise “no”.

• The password initialization and reset should be easy. In the proposed system,

initialization consists of asking the users on which topic they would like their

mnemonic sentence to be, and later providing them many alternative mnemonic

sentences. Note that the users can use only yes/no answers to input their choice

of mnemonic sentence. At reset time, the user will go through the same process

as the password initialization.

• Mnemonics have to be secure. They can not be a popular quote, or the lyrics

of a well known song. We achieve this security by using a previously proposed

password mnemonic system [66] to generate our mnemonic sentences.

It is easy to come up with yes/no mechanisms for authentication in constrained

environments, that are conceptually simple but that suffer from a lack of security, poor
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usability, or both. This chapter presents an authentication method that combines

good usability with high security. The crucial ingredient in our recipe is the use of a

mnemonic that enables the user to produce a long enough (hence more secure) string

of appropriate yes/no answers to displayed prompts (i.e. challenges). An important

feature of our scheme includes full resistance to replay attacks by someone who can

observe only the user’s sequence of yes/no responses (but not the mnemonics from

which they are derived, and that are safely stored between the user’s two ears): Such

an attacker acquires no advantage whatsoever over someone who did not observe the

yes/no sequence for that login session (in fact the yes/no sequence is indistinguishable

from a random binary sequence). Our scheme also offers full resistance to a phishing

attack: Mnemonics are shared secrets between the user and the authenticating server

and the users are never asked to enter their mnemonics to the system. The users can

detect an adversary that does not know the shared secret. Otherwise an adversary

does not gain any information about the password even if the user answers random

phishing challenges.

Section 4.2 includes an overview of the system and how a user will interact with

the system. Section 4.3 covers our adversary model. We will discuss the details of

the system and our implementation in Section 4.4. The work on related literature

will be summarized in Section 4.5.

4.2 System Overview

We propose a system that is based on mnemonic passwords [66], whose details will

be described in the following subsections but whose essential elements are as follows,

where P denotes the user’s previously existing (and securely generated) password bit

string (for now we assume P is 40 bits long, but we can accommodate any other

length).
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4.2.1 Password Initialization Step

1. The system generates a number of random sentences s1, . . . , sλ and displays

them to the user. See Figure 3.3. Each sentence has a length of µ words (not

counting functional words such as “the”, “a”, “with”). In our implementation

we used µ = 10. For example, s2 could come from tracing a random left-to-

right path along the columns of Table 4.2.2, using some of the password bits to

select one word from each column (in this case, 4 password bits are used up per

column). For example, if P = 0101100101010011111101001000101010001101

then the resulting s2 is Angry union artists simply dismissed demand to forgive

the laziness of the crazy mayor. Each si is selected from a separate table like

Table 4.2.2 which was derived from a different text source (e.g., one table from

sports, one from stock markets, one from animals, etc). We did not use advanced

natural language processing techniques in the generation of these tables, and

this is an area for future extensions of this work.

2. The user selects one of the above si’s, suppose it consists of the successive words

m1, m2, . . . , mµ.

3. The column from from which word mj was selected (call it Cj) contains what

we call the equivalence class (in that table) of the word mj . We use r to denote

the size of an equivalence class; in our case we used r = 16. In the above-

mentioned example, the equivalence class C2 of the word m2 is {Dutch, British,

. . .Romanian}. The user does not need to memorize any such Cj (only mj needs

to be remembered).

4.2.2 Authentication Step

For j = 1, . . . , µ in turn, the system asks the user , ℓ = log2 r questions (ℓ = 4 in

our setting) about column Cj, as follows.
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1. The system randomly permutes the entries of column Cj . For the ith entry

of Cj in the permuted order, let bi,3bi,2bi,1bi,0 be the binary representation of

i. For instance last column of Table 4.2.2 might be permuted as {leader, sena-

tor, enemy, foe, king, queen, president, chairman, children, mayor, friend, ally,

associate, assistant, manager, supporter}.

2. The system creates 4 sets Q3, Q2, Q1, Q0 such that the ith word of the permuted

Cj is included in Qk if and only if bi,k = 1. For example, for Table 4.2.2, Q0

would be {senator, foe, queen, chairman, mayor, ally, assistant, supporter}, Q1

would be {enemy, foe, president, chairman, friend, ally, manager, supporter},

Q2 would be {king, queen, president, chairman, associate, assistant, manager,

supporter} Q3 would be {children, mayor, friend, ally, associate, assistant, man-

ager, supporter}. See Figure 4.1 for the CAPTCHA-displayed version of these

questions.

3. For k = 3, 2, 1, 0 in turn, the system displays Qk to the user who answers “Yes”

if the mnemonic word mj (corresponding to the current column Cj) is in Qk,

and answers “No” otherwise. The contents of each Qk are displayed in random

order each authentication round. (There is no need to randomly permute the

ordering of the Qk’s to foil a replay attack, as they have already been implicitly

permuted by the above-mentioned permutation of the column Cj .) CAPTCHAs

can be used to foil an adversary at this step as shown in Figure 4.2. CAPTCHA

is essentially a side-channel between the user and the system. The side channel

can be used to hide the challenges from the adversary, as in the previous step, or

the responses as well. We can use a sequence of binary CAPTCHA challenges to

hide the user responses in the bit-wise exclusive-OR of the CAPTCHA answer

and the answer to the password challenge.

More on the rationale and security of the above is said later. For now we note

that (i) the user’s answers uniquely identify to the server the mnemonic word in each

column; (ii) the total number of questions is logarithmic in the size r of each column,
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Table 4.1
The mnemonic generation table for the sentence “Leading U.S. fashion
designers are strongly resisting pressure to regulate the thinness of the
popular models.” Note that the encoding order is random for every
set of candidate words.

leading U.S. fashion designers strongly resist pressure regulate thinness popular models

0000 peaceful viking tailor alarmingly welcome attempt modify rent passive queen

0001 thoughtful metropolitan cartoonist hardly agree haste alter wisdom inept leader

0010 rich city beekeeper suddenly reject duress cement culture able senator

0011uninterested rural realist simply embrace pressure manipulate education dull supporter

0100 provoked irish firefighters warily resist demand secure diligence accomplished king

0101 angry suburban artist doubtfully renounce bid fix weakness skilled ally

0110 outraged texan architect remarkably submit call quantify salary adept foe

0111 neutral aussie police again honor ultimatum measure pension dormant manager

1000 furious canadian cubist blindly recognize struggle forgive thinness crazy friend

1001 poor union choreographer suspiciously allow operation change obedience gifted president

1010 average british fantasist delicately accept order limit laziness bright enemy

1011 determined european developer fiercely surrender imperative throttle spirit witless children

1100 strong downtown farmer repeatedly tolerate hurry harness tenuity exhausted associate

1101 calm urban goldsmith reluctantly permit insistence deregulate slenderness talented mayor

1110 silent italian musician discreetly refuse ban restrict citizenship clumsy chairman

1111 ordinary french drivers slowly dismiss decree fiddle discipline sharp assistant

so that password security can be increased by a factor of 2µ by doubling the size

of a column yet adding only 1 extra question per column (and, more importantly,

without any increase in the size of the mnemonic, i.e., without further burdening the

user’s memory); (iii) a shoulder-surfer adversary sees the questions but not the user’s

yes/no answers (hence learns nothing); (iv) that a keystroke-logger sees the answers

but cannot relate the CAPTCHA-displayed words to the user’s mnemonics unless it

has sophisticated image-processing capabilities (in which case we would have raised

the bar considerably compared to current keyboard-entry based techniques which

easily fall prey to keystroke-loggers); (v) that a phisher adversary does not even know

what questions to display, immediately alerting the user to the user that something

seriously phishy is going on (in phact even if the phisher got the perhaps-careless

user to respond to very unfamiliar challenges, those responses are useless to such an

attacker). The randomized display of the contents of a Qk are aimed at foiling an

adversary who is trying to decode the CAPTCHAs and might gain information if

they appear in a predictable order (e.g., alphabetical).
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4.3 Adversary Model

We assume that all of the information used by the system during the mnemonic

creation is public and the adversary has equal (or more) computational power than

our system.

We foresee five possible types of attacks on this scheme:

• Shoulder-surfing: This type of adversary is assumed to have the ability to

physically record the authentication session of the user (possibly with a video

recording device such as a cell phone). The only thing that appears on the

screen is the challenge statements, the answers of the user are not displayed.

After the user answers the current challenge, the system refreshes the screen to

display the next challenge. It is possible to prevent a shoulder-surfing adver-

sary from obtaining the challenges by displaying them in the form of graphical

CAPTCHAs [57]. Even though the shoulder surfer can successfully record and

resolve the content of the challenges, the only way she/he can learn the answers

is by observing the user’s activities while inputing the answers. For defense

against a shoulder surfer that can effectively observe and record the CAPTCHA

challenges and the user’s activities at the same time, we recommend the use of

input devices that can be operated easily under the table or another cover (such

as remote control, mouse buttons or keyboard keys which can be covered by the

other hand or other haptic devices).

• Malicious Software (Spy-ware, keystroke-logger etc.): Malicious soft-

ware can record what is being sent by the authentication server as challenges

and what is being sent by the user as response. For defense against this adver-

sary our system can be used in conjunction with CAPTCHAs.

• Brute-force attack: This type of adversary has access only to the encrypted

password file (e.g., “/etc/passwd”). Our system does not weaken the security of

the existing authentication system and is based on mnemonic passwords, which
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lets the users to have random passwords that are secure against dictionary

attacks [66].

• Phishing: Mnemonics are shared secrets between the user and the authenti-

cating server, and the server has to use the knowledge of the mnemonics to

generate the challenge prompts. Thus, our system inherently has full resistance

to phishing attacks by an adversary who does not have this knowledge. The

users are never asked to enter their mnemonics to the system; instead, they will

be prompted with challenges that can be correctly answered only by someone

who has full knowledge of the content of the mnemonic. Since the users will be

looking for mnemonic words to appear in the challenge prompts, they will very

soon (after seeing one or two challenges) realize that the authenticating server

does not know the shared secret.

• Physically armed attacker (“Duress”): Duress codes are needed in case of

an armed attack, where the user needs a way to alert the police, while obeying

all requests of the attacker. Several home alarm systems already handle this

situation by providing home owners a duress code together with the regular

code. Duress code will turn off the alarm, but it will also send an alert to the

police. Same idea can be deployed for any type of password protected account,

where the duress code lets the user in, alerts the police and possibly asks the

system to adjust the information accessible to a duress situation. Our system

is designed to have duress codes, that the user can enter to login under duress.

See Section 4.4 for details on how duress codes are implemented.

4.4 Implementation Details

We assume that the environment enables the user to read (or hear, in the case of

vision impairment) the statements displayed on the screen and the user can input the

“yes/no” answers through a switch activated by muscle movements or brain signals.

The system includes a large set of tables, S, which are already populated offline.



61

These tables, such as Table 4.2.2, are used in generating mnemonic sentences and

challenges. Each table has a unique ID. Every table corresponds to a source sentence

from a corpus, and these source sentences are stored in the first row of the table. See

Table 4.2.2 generated for the example source sentence “Leading U.S. fashion designers

are strongly resisting pressure to regulate the thinness of the popular models.”

In Table 4.2.2, the first row includes the source sentence (since functional words

are not used for mnemonic generation they are excluded). Every column in this table

shows a possible candidate set for replacing the word in the first row.

4.4.1 Mnemonic Creation

At mnemonic-creation time, the system first generates a random password, P, for

the user (e.g. a random string of 40 bits), or the user’s existing password is used. Next

step is generating the possible candidates for mnemonic sentences that will encode

this password.

The system generates a small set of random salt values, and extract the source

table IDs from these salt values (e.g. log2 |S| least significant bits). If the size of the

table set, S, is 1024, least significant 10 bits of the salt will be used to pick the source

sentences that are stored in the first row of the table.

If the source sentence has 10 words as in our example sentence, and each of these

words have 16 alternatives; a random password chooses one word out of each of these

16 alternative words, hence encodes 4 bits per word, 40 bits in total.

As mentioned in Section 4.2, candidate sentences are formed by tracing a left-to-

right path along these columns guided by the P. First column shows the bit string

encoded by the words in the same row.

The system selects the words that encode P. This process generates one candidate

mnemonic sentence per such table. All of the candidate mnemonic sentences encode

the same P.
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At the end, the user is provided with a set of candidate mnemonic sentences to

pick from and the random password, P to use in a keyboard setting if needed.

Mnemonic creation concludes with the user’s selection of one of the candidate

mnemonic sentences for remembering as a mnemonic. (see Figure 3.3)

Once the user selects which mnemonic sentence to use, the ID of the corresponding

table that generated it is recorded in the least significant log2 |S| bits of the salt of

the password file entry.

Since we have many source sentences (say 1024 of them), the user can choose from

1024 different mnemonic sentences generated for each source sentence. However there

might be psychological attacks [13] to such a flexible system; hence we advise only a

small random portion of these possible mnemonics be given as choice to the users.

4.4.2 Mnemonic Usage

The mnemonic sentence is not stored in the system, instead the source table ID is

stored in the salt. The authentication involves a conversion of the “yes/no” answers

of the user into a password.

We achieve this by generating the challenges in such a way that every “yes/no”

answer narrows the search space by one-bit, similar to the idea behind the “20-

Question Game” 3. In our scheme, instead of looking for one object, we are searching

for a password that is composed of concatenation of several substrings, each of which

is encoded by a different word of the mnemonic sentence. Each mnemonic word is

a member of an equivalence class, and we need to ask several questions that will

deterministically find the exact mnemonic word within a class. We ask log2 r, (e.g.,

4), questions to determine one mnemonic word, where r, (e.g., 16), is the number of

words in an equivalence class. Note that, we want each question to narrow the search

space for the mnemonic word by 1. Recall the discussion in Section 4.2.

3This game is based on asking the players to think of an object and answer the classification questions
asked by the 20Q Artificial Intelligence Game device. See http://www.20q.net/
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The key idea behind generating each challenge is very similar to the idea behind

non-adaptive blood testing technique [67]. The area of combinatorial group testing

concerns itself with performing group tests on subsets of a given set to identify de-

fective elements in that set: A test for a subset tells whether that subset contains

a defective element. If the set size is r and the number of defective elements is no

more than d, then the goal is to pinpoint all the defective elements by making as few

group tests as possible. This research area arose out of the need to test blood supplies

for syphilis antigens during the last World War: Each test was expensive, and using

one test for each of the r blood samples was unacceptable, hence the idea of group

testing by using each test on a mixture of blood droplets from a subset of the r blood

samples [67]. The original problem was adaptive in the sense that test i + 1 could

be designed after the outcome of test i was known, thereby enabling a simple binary

search for the defective element in the special case of d = 1. The non-adaptive version

of the problem is when all the tests are done in a single round, with all the subsets

to be tested determined in advance.

The analogy with our problem is as follows: For each mnemonic word mj , the r

“blood samples” are the r words in mj ’s equivalence class. The mnemonic word is like

the contaminated blood sample. The server presents the user with a subset of words

from mj ’s equivalence class, Cj, (possibly containing mj) and the user is supposed to

respond yes or no based on whether mj is in that subset (i.e., whether that subset

is “contaminated”). A shoulder-surfer type adversary sees the server’s questions, but

does not see the user’s yes/no answers. A keystroke-logger type adversary sees the

answers but not the questions. The server tests subsets in a manner that enables it

to uniquely identify mj , and then the server does a table lookup (local to the server)

for the password’s bit string associated with mj .

Does the adversary learn anything from the questions? To prevent that, even

though the server asks the questions in succession, it is imperative for the server to

use a non-adaptive technique whereby all the questions have been pre-determined

well in advance, as in non-adaptive combinatorial group testing. The questions are
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therefore independent of which item in the set is the “contaminated” one, and hence

they reveal nothing to the adversary who sees them. Using adaptive group testing

techniques (like binary search) for determining the questions would be lethal from the

security point of view: The adversary would easily pick out mj from all the words in

its equivalence class.

Our scheme will use d = 1, for which an ℓ = ⌈log2 r⌉ test non-adaptive solution

is well known and in fact quite straightforward. We briefly sketch it, for the sake

of making this chapter self-contained. In what follows Cj is the equivalence class of

word mj , where |Cj| = r. (Recall the authentication step described in Section 4.2)

1. Let the words of Cj be listed in an order (which will be randomly changed at

every authentication session) as w1, . . . , wµ.

2. For each word wi, let the ℓ bit binary representation of i be denoted as the bit

string bi,ℓ−1, . . . , bi,0.

3. For k = 0, . . . , ℓ − 1 in turn, the server’s question Qk is constructed as follows:

Every wj whose bi,k = 1 is included in Qk.

The number of server questions is ℓ, and each question is constructed without any

dependency on which element of Cj is the “contaminated” one, mj . The server can

easily determine mj: It is the only word of Cj such that all of the Qk’s that contained

it were answered with a “yes” by the user.

When the equivalence classes have a size of 16 as in our example, each challenge

will have 8 words and the user will be asked 4 questions. An example set of questions

for finding which word is the mnemonic word in the last column of Table 4.2.2 would

be as follows:

• “Does your mnemonic contain one of the following words?:”

– “senator, foe, queen, chairman, mayor, ally, assistant, supporter”
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(a) (b)

(c) (d)

Fig. 4.1. One of the possible set of challenges Q0 to Q3 that could
be created for the last column of 4.2.2. Note that, even though we
have implemented our system to display the challenges in CAPTCHA
form, it is also possible display them in plain text format on text-only
consoles or LED displays.

If your mnemonic is in the list, tell where 

the APPLE is, otherwise tell where the 

STRAWBERRY is.

YES NO

Fig. 4.2. CAPTCHAs are a side-channel between the user and the
system. It is possible to hide the real user responses from an adversary
by using a bit-wise exclusive-OR operation with these responses and
a random bit-string that is shared in this channel. The advesary has
to solve the CAPTCHA to get the real responses.
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The user answers 40 such questions in total (4 for each one of the 10 mnemonic

words) with a “yes” or a “no” signal using the switch (equivalently with 1 for “yes”

or 0 for “no”).

After the answers are collected, the system extracts each substring encoded by the

mnemonic words. These substrings are concatenated in the order of corresponding

words in the source sentence to form the 40 bit length bit string. The hash of the 40

bit string with the salt is compared to the password field in the password file where

the hash of the password is stored as in the regular UNIX password file systems. Note

that the same password file can still be used with the ASCII passwords.

Our current password size of 40 bits falls short of the 52 bits commonly used in

deployed systems, but we are confident that we will be able to exceed the 52 bits in

the continuation and further refinement of this work. In the meantime, even in its

present form our current design is suitable for use as a front-end to a 52-bit password

system: We would use our system for entering 40 of the 52 bits, and the missing

12 bits would be handled as private salt in a similar fashion to what was described

in [68] – by the front-end essentially trying all 212 possibilities for the remaining 12

bits. The password file would stay the same as before our system was deployed, as

would the password: We act only as a front end, for special situations where normal

keyboard entry is either impossible or risky.

4.4.3 Duress Codes

After the user picks a mnemonic sentence the system will randomly decide a

position, o, on the password bit string , P. This random position information is

stored in the salt of the user. Our system provides 2 different duress codes to the

user. We decided to provide at least two duress codes to protect the user even when

the attacker is aware of the fact that the system has duress code and asks the user

to write down two different passwords and show which one is the duress code, which

one is the original password.
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Duress password will differ only at one of the 2 positions that comes after position

o. If the entered password differs from the correct password at any one (and only one)

bit in this sequence, the system will interpret the login attempt to be performed under

duress. It will let the authenticating server know about the duress situation, let the

user authenticate and send an alarm to the police. Note that, if the entered sequence

differs at more than one bit from the duress sequence, the system will interpret this

entry as a wrong password and will deny the authentication. This restriction is

required in order not to increase the chances of successful dictionary attacks.

For example, when the user’s password is

P = 0101100101010011111101001000101010001101

and o is 37. The mnemonic sentence is Angry union artists simply dismissed demand

to forgive the laziness of the crazy mayor. The mnemonic word “mayor” encodes the

last four bits, “1101’, and the sequence of bits marked by the duress marker (37) is

“10”. Then the system displays to the user that “president” (encoding “1001”), and

“assistant” (encoding “1111”) will be displayed to the user as the duress codes. The

user is free to memorize all three or choose the two that are easier to remember.

4.5 Related Work

There are many studies in the literature about the requirements for increasing the

accessibility of electronic resources for disabled [59–62,69,70] and possible techniques

(including both hardware and software solutions) to increase the bandwidth of input

from these users [63, 64, 71]. Similarly there are many scientific and commercial

work on providing access to web via smaller devices where the input capabilities

are restricted [72, 73]. There is a big overlap in the design requirements for the

two research areas such as assuming low input bandwidth; giving high emphasis on

usability requirements (such as providing easy access to all content); or the need for

being device and system independence. Trewin discusses the overlap between the user
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agent accessibility requirements for desktop browsers for Web, and the requirements

for a usable Mobile Web in [73].

Mankoff et al.discuss the needs of motor disabled users for accessing the web in [62]

. They define this access as a “low bandwidth” access, due to the fact that these users

can produce only one or two signals, when communicating with a computer. These

users usually use a switch mechanism that can be controlled in a variety of ways,

such as button activated switches, pneumatic switches, switches that are operated by

a muscle movement such as raising an eye brow [63], or Brain Computer Interface

(BCI) [74]. Mankoff et al. introduced the design requirements for accessibility of web

pages by motor-disabled user, these requirements include making currently selected

link highlighted, allowing the user access to the bookmarks as links or adding links

for skipping unwanted text. They have implemented a proxy and a web browser that

can render any given web page and convert it into a page that fulfills the requirements

of low bandwidth accessibility.

The closest work to ours is the “pass-thoughts” authentication system proposed

by Thorpe et al. [65]. Pass-thoughts system is based on recognition of unique brain

signals send by the users. This system benefits from the BCI technology [74] that can

take a brain signal, extract its features and then translate or classify these features

into a command. They list the following set of requirements for an authentication

system: i) changeability (in case the old one is stolen); ii) shoulder-surfing resistance;

iii) theft protection ( e.g. acoustic recording of keyboard sounds, or brute force at-

tacks on the password file); iv) protection from user non-compliance (such as sharing

the password); v) usability (i.e. fast and easy authentication). In order to fulfill all of

these requirements, the authors design an authentication scheme that is solely based

on training a user to think about the same idea (e.g. a place, a thing, or a melody),

and recording the repeatable parts of the brain signal features extracted from this

“pass-thought”. In theory a password space based on pass-thoughts would be very

large, since humans can generate many different pass-thoughts, however Thorpe et

al. note that the BCI technology, that was available when that paper was published
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(September 2005), was not able to provide a communication channel with enough

bandwidth that can carry a unique brain signal. The users were able to input ap-

proximately 25 bits per minute using a BCI device. Since such a low-bandwidth has

limited the applicability of pass-thoughts as a high entropy authentication system,

the authors provided a feasible pass-thoughts system, where they provide the user

with a screen that has a grid of several characters and the user is asked to generate

a sequence of P300 potential spikes, hence highlight several characters one by one on

this grid using a BCI device that allows disabled people to spell words. This BCI

device records the evoked P300 potentials (generated by the brain 300ms after a sur-

prising or an exciting event) from a user and highlights a random item on the screen

for each one of the detected potential, in time the user is expected to learn how to

control the P300 potentials and input the same sequence of P300 potential spikes (i.e.

the pass-thought) to the system. The verification of the pass-thought is performed

by comparing the hash of this input (recorded spikes) with the hash of previously

recorded pass-thought.

In 2004, Yan et al. conducted a controlled experiment to compare the effects

of giving three alternative forms of advice about password selection [12]. This trial

involved 400 first-year students at Cambridge University. 100 of these students were

given the classical instructions on how to pick a password: “ Your password should

be at least seven characters long and contain at least one non-letter.” 100 of them

were given a paper that has the letters A-Z and integers 1-9 repeatedly on it, and

they were asked to close their eyes and randomly pick symbols from this letter to

generate a random password, later they were asked to write it down and carry that

paper with them until they memorize the password. The other 100 students were

given an instruction sheet that explains how to generate mnemonic passwords. The

last 100 were not given any instructions at all. Yan et al. performed several well-

known attacks on these passwords, as well as analyzing the statistical properties of

these passwords (e.g. length) and the frequency of the users’ need for a password

reset.
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This study challenged several widely accepted beliefs about security and memo-

rability of passwords:

1. It is confirmed that users have difficulty remembering random passwords (Many

students continued to carry the written copy of their password for a long time,

4.8 weeks on the average.).

2. The results also confirmed that mnemonic passwords are indeed harder for an

adversary to guess than naively selected passwords.

3. Contrary to the popular belief that random passwords are better than mnemonic

passwords, this experiment showed that mnemonic passwords are just as strong

as the random passwords.

4. This study also showed that it is not harder to remember mnemonic passwords,

which are just as memorable as naively selected passwords.

5. Another interesting result of this study is that it is not possible to gain a sig-

nificant improvement in security by just educating users to use random or

mnemonic passwords; both random passwords and mnemonic passwords suf-

fered from a non-compliance rate of about 10% (including both too-short pass-

words and passwords not chosen according to the instructions).

The lack of compliance of users can also be explained with the lack of incentive.

User incentive can be created by refusing non-compliant passwords or by providing

an easy to use authentication scheme, or by bundling small incentives from several

systems into a large incentive. Our system provides the following incentives for the

users, in order to encourage them to comply with the instructions for effective use:

• for users with motor disability we provide a way to authenticate themselves

without the help of another person, and for all users we provide a way to

authenticate themselves when they are faced with an input-constrained envi-

ronment either due to the lack of a keyboard or due to high risk of shoulder

surfing.
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• allowing the users to pick the mnemonic sentences that fit to their taste, hence

are memorable to them, from a set of mnemonic sentences generated by the

system.

• providing an easy password reset mechanism.

In 2005, Jeyaraman and Topkara proposed a system that automatically generates

memorable mnemonics for a given random password [50]. This system is based on

searching for a mnemonic that encodes the given password in a pre-computed database

of mnemonics, which is generated by taking sentences from a text-corpus and pro-

ducing syntactic and semantic variations of these sentences. In order to produce

the variants of corpus sentences, they used linguistic transformations (e.g., synonym

substitutions).

A recently introduced mnemonics based password authentication scheme by Top-

kara et al. [66] allows the users to maintain a multiplicity of truly random passwords,

which are independently selected, by just remembering only one mnemonic sentence.

An adversary who breaks one of the passwords encoded in the mnemonic sentence

does not gain information about the other passwords. A key idea is to split a pass-

word into two parts: One part is written down on a paper (helper card), another

part is encoded in the mnemonic sentence. Both of these two parts are required for

successfully reproducing the password, and the password reconstruction from these

two parts is done using only simple table lookups. In this scheme changes to pass-

words do not necessitate a change in the mnemonic sentence, only requirement is the

generation of a new helper card.

The study of Reverse Turing Tests in [56] suggests a method to ensure that it

will take a pre-determined time to break a password with an automated attack if

the adversary has to use the login system. This is achieved by judicious use of

challenges by the system that require computational capabilities of a human ( e.g.,

CAPTCHAs [57]). Our system can be complemented with a similar system such
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that the adversary is even further limited in the time that it is required to break a

password.

4.6 Summary

We presented a password authentication system that is suitable for use in input-

constrained environments, and that has many security and password-mnemonic ad-

vantages over existing keyboard-based schemes. Because of its compatibility with

existing systems (to which it can act as a front-end), it can be used in an intermit-

tent fashion alongside these existing systems: A user may prefer to use the normal

keyboard entry most of the time (e.g., at home and in the office) but occasionally

switch to using our system in certain situations, such as when the user fears the pres-

ence of shoulder-surfers or surveillance cameras, or has a temporary wrist injury that

prevents the use of a keyboard, etc.

Yet another advantage of our scheme is that a truly random password does not

place any more burden on the user’s memory: The mnemonic sentence that our

system generates is neither easier nor harder to remember for a strong password

than for a weak password. Once users realize this fact, they will tend to make

stronger password choices (or even use quality random number generators for that

purpose). Making strong passwords more acceptable to users could perhaps turn out

to be a greater advantage of our scheme than its suitability for input-constrained

environments. Contrast this with what happens with currently deployed systems

when an organization forces its staff to use truly random (hence hard to remember)

passwords: The little yellow stickies tend to appear near computers, so that the

janitorial staff and perhaps even a sharp-eyed visitor gets to read the password.

Finally, our system is nowhere near its final form, and we will continue to actively

work on enhancing it along many directions, including the use of more sophisticated

natural language processing techniques than the simple ones we are using currently.
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5. ANOTHER APPLICATION: NL WATERMARKING

This chapter explores another application of the techniques we presented in the pre-

vious sections: The resilient watermarking of natural language text through a mech-

anism that was previously thought to be inherently non-resilient, namely synonym

substitution. The reason it was thought to be non-resilient is the belief that what-

ever synonym substitutions are done for marking can be reversed or masked by the

massive use of such substitutions by the adversary (after all, the list of synonyms is

widely available online). Before presenting our scheme, we provide a brief review of

information hiding in natural language text.

Information-hiding in natural language text has, in the past, consisted mainly of

carrying out approximately meaning-preserving modifications on the given cover text

until it encodes the intended mark. A major technique for doing so has been synonym-

substitution. In these previous schemes, synonym substitutions were done until the

text “confessed”, i.e., carried the intended mark message. We propose here a better

way to use synonym substitution, one that is no longer entirely guided by the mark-

insertion process: It is also guided by a resilience requirement, subject to a maximum

allowed distortion constraint. Previous schemes for information hiding in natural

language text did not use numeric quantification of the distortions introduced by

transformations, they mainly used heuristic measures of quality based on conformity

to a language model (and not in reference to the original cover text). When there

are many alternatives to carry out a substitution on a word, we prioritize these

alternatives according to a quantitative resilience criterion and use them in that

order. In a nutshell, we favor the more ambiguous alternatives. In fact not only do we

attempt to achieve the maximum ambiguity, but we want to simultaneously be as close

as possible to the above-mentioned distortion limit, as that prevents the adversary

from doing further transformations without exceeding the damage threshold; that
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is, we continue to modify the document even after the text has “confessed” to the

mark, for the dual purpose of maximizing ambiguity while deliberately getting as

close as possible to the distortion limit. The quantification we use makes possible an

application of the existing information-theoretic framework, to the natural language

domain, which has unique challenges not present in the image or audio domains.

The resilience stems from both (i) the fact that the adversary does not know where

the changes were made, and (ii) the fact that automated disambiguation is a major

difficulty faced by any natural language processing system (what is bad news for

the natural language processing area, is good news for our scheme’s resilience). In

addition to the above-mentioned design and analysis, another contribution of this

thesis is the description of the implementation of the scheme and of the experimental

data obtained.

5.1 Introduction

In recent years, there has been an increased interest in using linguistic techniques

for designing information hiding systems for natural language text. These techniques

are based on using the knowledge of language to generate or re-write a document in

order to encode hidden information [75].

Even though there is a growing interest in information hiding into natural lan-

guage, there has not been much movement in the direction of quantification that

makes possible using the considerable theoretical work on the analysis of the commu-

nication channel established by information hiding. To avail oneself of the information

hiding model proposed by Moulin et al in [76] requires quantification of the distortion

effect of each linguistic transformation. In this thesis we carry out such an anal-

ysis, using a natural language watermarking system based on a novel twist on the

old idea of synonym substitution. Section 5.2.1 will discuss how we use the existing

information hiding model for the natural language domain.
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Publicly available methods for information hiding into natural language text can

be grouped under two branches. The first group of methods are based on generating

a new text document for a given message. Spammimic [77] is an example of this first

group. The second group of methods are based on linguistically modifying a given

cover document in order to encode the message in it. Natural language watermarking

systems (and our system’s framework) fall under the second type of systems, where

there is also a need for robustness against an adversary who is attempting to destroy

the mark without destroying the value of the watermarked document. For a review of

closely related work in information hiding into natural language, refer to Section 5.5.

The watermarking system proposed in this chapter is based on improving resilience

of synonym substitution based embedding by ranking the alternatives for substitution

according to their ambiguity and picking the one that has maximum ambiguity within

the synonyms (subject to not exceeding the maximum cumulative distortion limit).

The encoding is designed in a way that the decoding process does not require the

original text or any word sense disambiguation in order to recover the hidden message.

This system follows the Kerckhoff’s rule, namely, that the decoding process depends

only on the knowledge of the secret key and public domain information (no “security

through obscurity”).

It is possible to determine infringement of copyright using simple string matching

if the infringement is in the form of verbatim copying of the text. However the adver-

sary can foil the string matching based infringement detection, through automated

meaning preserving changes to the text [75]. A desired natural language watermark

should be resilient against these modifications. Refer to Section 5.2.2 for more dis-

cussion on the model of adversary.

The detection of copyright infringements on web publishing could be one of the

major applications of natural language watermarking. In this application the copy-

right holder will be able to find out infringements by running a web crawler that

detects the copyright holder’s watermark; or by subscribing to a web crawler service

that searches for watermarked text on the web. In order to realize this, it is cru-
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cial that the watermark detection can be performed automatically without human

intervention. This requirement is satisfied by the system introduced in this thesis.

In case a news agency does not watermark its news articles, but uses a web crawler

to search for the illegal copies of the articles on the internet. An adversary, who wants

to re-publish an article from this agency, can perform synonym substitution to deceive

a string matching based web crawler. The infringement detection can be performed

by checking whether the words in the suspicious copy and the original document are

synonyms.

The details of the proposed watermarking system are explained in Section 5.3,

followed by experimental results in Section 5.4.

Even though we have focused our attention directly on synonym substitution

based watermarking, the analysis and discussions made in this thesis shed light on

the information theoretic analysis of other systems that achieve information hiding

through approximately meaning-preserving modifications on a given cover text.

5.2 Framework

This section discusses the general framework we use, including our model of the

adversary. Where appropriate, we explain how the peculiarities of the natural lan-

guage application domain pertain to the framework.

5.2.1 Review of Distortion Quantification

Here we briefly review the general model proposed by Moulin et al in [76] and use

the same notation, as applicable. The later section on experimental results (Section

5.4) will explain how we computed the values for the below equations. In this notation,

random variables are denoted by capital letters (e.g. S), and their individual values

are donated by lower case letters (e.g. s). The domains over which random variables

are defined are denoted by script letter (e.g. S). Sequences of N random variables

are denoted with a superscript N (e.g. SN = (S1, S2, ..., SN)).
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Natural language watermarking systems aim to encode a watermark message, M ,

into a given source document, SN , using a shared secret, KN , where KN is the only

side information shared between the encoding and decoding processes. The goal of

the encoding process is to maximize the robustness of watermark against possible

attacks while keeping the distortion inflicted on the SN during watermarking within

allowable limits. There are two distortion constraints on a given natural language

watermarking system.

The first distortion constraint is introduced to capture the fact that the watermark

encoding process, fN : SN ×M×KN → XN , has to preserve the “value” of the source

document, while creating the watermarked document XN . Moulin et al formalizes

this constraint as below:

∑

sN∈SN

∑

kN∈KN

∑

m∈M

1

|M|
p(sN , kN)dN

1 (sN , fN(sN , m, kN )) ≤ D1 (5.1)

where p is the joint probability mass function and d1 is a nonnegative distortion

function defined as d1 : S × X → R+. The distortion functions di
1 are extended to

per-symbol distortion on N -tuples by dN
i (sN , xN ) = 1

N

∑N

k=1 di(sk, xk).

The second constraint denotes the maximum distortion an adversary can introduce

on the modified document, Y N , without damaging the document’s “value” for the

adversary. The constraint on the attack channel for all N ≥ 1 is formalized as below:

∑

xN∈XN

∑

yN∈Y

dN
2 (xN , yN)AN (yN |xN)p(xN ) ≤ D2 (5.2)

where AN(yN |xN ) is a conditional probability mass function that models an ad-

versary who maps XN to YN , and d2 is the adversary’s distortion function (similar

to d1). The decoder process receives Y N .

For image, video or numeric databases, the space can be modeled as a Euclidean

space and the effect of changes on the objects can be quantified as a continuous

function [76,78]. However, it is rather hard to model the natural language text input.

1i ∈ 1, 2
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The value of a natural language document is based on several properties such as

meaning, grammaticality and style. Thus, the distortion function should be designed

to measure the distortion in these properties.

In fact we cannot even talk of a distance in natural language processing, as the

triangle inequality need not be satisfied. For example, both “lead” and “blend” are

synonyms of different senses of the word “go”, as the following entries (obtained from

WordNet) indicate:

• blend, go, blend in – (blend or harmonize; “This flavor will blend with those in

your dish”; “This sofa won’ t go with the chairs”)

• go, lead – (lead, extend, or afford access; “This door goes to the basement”;

“The road runs South”)

The difference between the word “lead” and the word “go”, and the difference

between the word “blend” and the word “go”, are rather low, whereas the difference

between “blend” and “lead” is high. Figure 5.1 uses pathlen measure to illustrate the

difference between word senses.

We cannot use that part of [76] that assumes a Euclidean distance, since the

triangle inequality does not hold in the natural language framework of our application.

However, the other requirements that the difference function must obey, are satisfied,

namely

Boundedness This is the requirement that the distortion is finite. This holds in our

case, because no matter how different two sentences are, our difference function

between them will produce a finite outcome.

Symmetry This is the requirement that d(a, b) = d(b, a). That we satisfy this follows

from the fact that the numbers we use for differences are weights of edges in an

undirected graph (as will become apparent in section 5.3).

Equality This is the requirement that d(a, b) = 0 if and only if a = b. This holds in

our case.
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Fig. 5.1. An example illustrating how the differences in natural lan-
guage need not satisfy the triangle inequality. The presented differ-
ences are calculated by pathlen measure of WordNet::Similarity library
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5.2.2 Model of the Adversary

The Achille’s heel of traditional synonym-substitution based watermarking is an

adversary who, randomly and in a wholesale fashion, carries out synonym substitu-

tions. While such an adversary may be effective against these previous uses of the

synonym substitution technique, our scheme thwarts such an adversary (as will be dis-

cussed later in the chapter). However, thwarting such a random adversary is not a fair

criterion, as it is a rather naive form of attack. Therefore our model of the adversary

is one who fully knows our scheme (except the key) and has the same knowledge and

computational capabilities (including automated natural language processing tools,

and access to all the databases used by the encoding and decoding processes). The

security of our scheme therefore does not depend on an assumption of naive ignorance

on the part of the adversary, rather, it depends on the following facts.

First, the approximately meaning-preserving changes that we make are in the di-

rection of more ambiguity, and automated disambiguation is harder for the adversary

than it is for us because we start with a less ambiguous (original document) docu-

ment than the one in the hands of the adversary (watermarked document). A human,

however, is able to quickly disambiguate when reading the marked text: We are ex-

ploiting the well-established fact in the natural language processing community, that

humans are much better than computers at disambiguation [55].

Second, we carry out substitutions not only for the purpose of encoding the mark

in the text, but also for the purpose of getting as close as possible to the allow-

able cumulative distortion limit, an idea that was previously suggested in a broader

framework (see [79]). That is, we keep doing transformations even after the mark is

embedded, for the sole purpose of accumulating enough distortion to get close to the

allowable limit. This is crucial: The adversary, not knowing the key, does not know

where we carried out the modifications (as that choice is key-based), and trying to

“un-do” them by wholesale application of transformations will cause the adversary to
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exceed the allowable distortion limit (because s/he started out close to it in the first

place).

In practice the adversary is not limited to synonym substitutions; s/he can also

make meaning-preserving syntactic changes which effect the ordering of words with-

out altering them [75]. This sort of attacks are more problematic in languages with

free word order (e.g. Finnish, Hindi, Turkish); since the adversary can put the words

in any permutation without damaging the text too much. If the adversary performs a

more sophisticated attack using syntactic modifications, even though the root words

will be preserved, their order may change in the copied text. In this case, the wa-

termarking mechanism should take into account the possible syntactic modifications.

The watermarking mechanism can use an auxiliary fixed syntax with a fixed word

order for watermark embedding and detection purposes (e.g. subject, object, verb).

In addition to this, ambiguity may be used to prevent from syntactic modifications

as a pre-emptive defense at the watermark embedding time (e.g. using pronouns as

ambiguous references).

Note that the adversary in our scheme uses an automated process to attack the

watermark. Our aim is to raise the bar for the cost of removing the watermark mes-

sage. In this sense, our scheme can be considered successful if it forces the adversary

to manually process the document for removing the watermark.

5.3 Synonym Substitution Based Watermarking System

Most of the previous work on information hiding in natural language text was

designed to get better as the accuracy of natural language processing tools improves.

In [80], Bergmair discusses the need for an accurate word sense disambiguator for fully

automating a synonym substitution based steganography system that requires sense

disambiguation both at encoding and decoding time. Topkara et al [81] give examples

of how accuracy of the text processing tools affects the quality of the watermarked

sentences.
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Whereas previous work in this area typically benefits from progress in natural lan-

guage processing, we propose a watermarking system that benefits from the difficulty

of automated word sense disambiguation, as it increases the adversary’s complexity

of removing the hidden message.

We propose a lexical watermarking system that is based on substituting certain

words with more ambiguous words from their synonym set. Here by ambiguous word,

we mean a word that is a member of several synonym sets and/or has many senses.

For example, if the geographic context is North Carolina, then “the Raleigh-Durham

area” can equivalently be re-stated as “the triangle” where “triangle” refers to the

“research triangle area”. The adversary now has to figure out that this particular

“triangle” is neither a three-sided polygon, nor a musical instrument, nor a situation

in which two people are competing for the love of the same third person. The difficulty

of the adversary’s task of automated disambiguation is widely accepted in the natural

language processing community. Although our implemented system cannot yet carry

out the above specific transformation (because its public knowledge base does not

yet contain the specific equivalence it uses), we mentioned it because it perfectly

exemplifies the kinds of substitutions we seek (and that will undoubtedly be present

in a more refined version of our prototype).

Homograph is a more specific linguistic term used for the “ambiguous” words.

Two or more words are homographs if they are spelled the same way but differ in

meaning and origin, and sometimes in pronunciation. For example the word “bank”

is a homograph, and means either a financial institution, the edge of a stream, or a

slope in the turn of a road. We have implemented our system to consider the words

with more than one sense as homographs, and only homographs within a synonym

set are considered as the target words for synonym substitution.

An example of what our system does carry out today is when we encounter the

word “impact” as a verb in our cover text: We will find that it is a member of

{affect, impact, bear upon, bear on, touch on, touch} synonym set. The verbs “af-

fect” and “touch” are possible alternatives for replacing the verb “impact”. Our
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system favors replacing the word “impact” with the word “touch” over the word

“affect”, because the expected distortion that will be imposed by the verb “touch”

on the adversary, E(d2(touch; impact, s2)), is higher than the expected distortion,

E(d2(affect; impact, s2)), that will be imposed by the verb “affect”. E(d2(wc; wo, so))

is the average difference of every sense of watermark carrying word, wc, to the original

(word,sense) pair, (wo, so). Refer to Section 5.3.1 for the details of how this expected

distortion is calculated in our system. See Figure 5.2, for a simplified illustration of

this embedding. For simplicity of the graph, word sense nodes are collapsed into one

node for each word except the verb “impact”, whose sense is learned from the cover

text. Only relevant nodes are colored and labeled. Edge weights are again omitted

for simplicity. “affect” has five senses, “touch” has fifteen senses, “impact” has two

senses, “bear on” has four senses, “touch on” has four senses, and “bear upon” has

only one sense.

In our scheme, more information is available about the sense (meaning) of the

words at the watermark embedding time, since the original document is available.

The watermarking process we describe, replaces as many as possible words with one

of the homographs in their synonym set. Hence the watermarked text has “blurred”

meaning and it becomes harder for an adversary to perform word sense disambiguation

on it (i.e., the ambiguity has increased in such a way that it is harder to find the

correct synonym of the words without human intervention). In such a setting, the

adversary will not be willing to replace every homograph word with a non-homograph

automatically and the watermark will be successfully retained. Note that, it may also

be possible to magnify this asymmetry of information further by consulting to the

actual author of the text during watermark embedding, for the correct sense of a

word at watermarking time.

As an example, consider the sentence “he went without water and food for 3 days”

coming from a watermarked text. If the adversary had replaced the word “went” with

the word “survived” then the change in the meaning is minimal. However, if he had

replaced “went” with “died”, the meaning of the sentence would be taken very far
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Fig. 5.2. A sample colored graph that shows the connections of the
verb “impact”. For simplicity of the graph, word sense nodes are
collapsed into one node for each word and edge weights are omitted.
Only relevant nodes are colored and labeled.
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from its original meaning. Yet both “survive” and “die” are synonyms of different

senses of the word “go”.

Loosely speaking, we are using ambiguity in natural language to imitate one-way

hash functions. For example, when given as original sentence, “the gas station is

after the cant on highway 52.” we can replace the word “cant” with its synonym,

“bank”. The transformed sentence will now say “the gas station is after the bank

on highway 52”, where it is not obvious whether the gas station is after the financial

institution, after the inclined slope on the turn of the road, or after the stretch of

road that briefly adjoins the river’s bank. Our system uses this deliberate injection of

ambiguity whenever possible, and replaces words with more ambiguous words from

their respective synonym set.

The decoding process is not dependent on the original text and there is no need to

know the sense of a word in order to decode the message. This simplicity of decoding

process makes it computationally light, and it enables the copyright infringement

detection to be performed by a web crawler on a large number of online documents.

The details of the encoding and decoding processes are explained in the next

subsection.

5.3.1 The Encoding and Decoding Algorithms

Our system is based on building a weighted undirected graph, G, of (word,sense)

pairs, where an edge between two nodes represents that they are synonyms. In our ex-

perimental implementation, the synonym sets of words are taken from WordNet [45].

Each weight on a graph’s edge is a measure of the similarity between its two endpoints.

Several different techniques and similarity functions have been proposed in the

natural language processing literature to quantify the similarity of two words. A large

number of these techniques are based on WordNet, which is an electronic dictionary

that organizes English nouns, verbs, adjectives and adverbs into synonym sets, each

representing one underlying lexical concept [45]. See Table 5.1 for statistics about the
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Table 5.1
Wordnet2.1 Database Statistics

Category Unique

Strings

Synsets Word-

Sense

Pairs

Monosemous

Words

Polysemous

Words

Polysemous

Senses

Noun 117097 81426 145104 101321 15776 43783

Verb 11488 13650 24890 6261 5227 18629

Adjective 22141 18877 31302 16889 5252 14413

Adverb 4601 3644 5720 3850 751 1870

Total 155327 117597 207016 128321 27006 78695

content of WordNet 2. There are several semantic relations that link the synonym

sets in WordNet such as “is-a-kind-of”, or “is-a-part-of” relations. Some of the word

similarity functions are available as a Perl Library called WordNet::Similarity [47,82].

WordNet::Similarity package implements six different similarity measures that are in

some way based on the structure or the content of WordNet.

Three of the WordNet::Similarity measures are based on the information content

of common subsumers of two concepts. The Resnik measure is based on using the

information content of most specific common subsumer, Least Common Subsumer

(LCS), of two concepts as a similarity value. The Lin measure scales the information

content of the LCS by the sum of the information contents of the two concepts, while

the Jiang and Conrath measure takes the difference of this sum and the information

content of the LCS. The information content of a concept is learned from a sense-

tagged corpus, Semcor [83].

The other three similarity measures are based on path lengths between pairs of

concepts. The Leacock and Chodorow measure is based on scaling the shortest path

length between two concepts by the maximum path length found in the subtree of

2http://wordnet.princeton.edu/man/wnstats.7WN, last visited on May 9th 2006
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the “is-a” hierarchy that includes these two concepts. The Wu and Palmer measure

is calculated by finding the depth of the LCS of the two concepts and scaling it by

the sum of the depths of two concepts. The path measure is a baseline metric and is

equal to the inverse of the length of the shortest path between the two concepts.

Another method for measuring the similarity between the words is statistically

analyzing a large and balanced text corpus in order to learn the mutual information

of the two words, and resemblance of their context. Several mutual information

measures have been proposed for calculating word similarity, see [84] for a good

survey of these measures.

Language models can be used to learn more information about the similarity of

the context of two concepts. A Language Model (LM) is a statistical model that

estimates the prior probabilities of n-gram word strings [85]. An n-gram LM models

the probability of the current word in a text based on the n − 1 words preceding it;

hence, an n-gram model is a n−1th order Markov model, where, given the probability

of a set of n consecutive words, W = {w1, . . . , wn}, the LM probability is calculated

using

P (w1, . . . , wn) =

n∏

i=1

P (wi|w0, . . . , wi−1), (5.3)

where the initial condition P (w1|w0) is chosen suitably. A set of words C = {c1, . . . , ck}

may be considered “similar” if P (cj|w1, . . . , wn) ≃ P (C|w1, . . . , wn)P (ci|C) holds for

all cj ∈ C. Readers are referred to [86] for a heuristic algorithm that can be used to

compute C using language models.

In our experiments we have used the Wordnet::Similarity measures for simplicity.

Alternatively, a corpus-based measure can be used for the same purpose. More details

about our experiments can be found in Section 5.4.

After graph G is formed, we select a subgraph, GW of G using the secret key

k. This subgraph selection is performed over the words that have homographs in

their synonym sets. After this, we use k once more to color the graph in such a way

that approximately half of the homograph neighbors of a non-homograph word are

colored with blue to represent the encoding of “1”, and the other half are colored
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with green to represent the encoding of “0”, while non-homographs are colored with

black to represent “no-encoding”. See Figure 5.2 for a simplified example where the

word “impact” is colored “red” only to show that it is the word that will be replaced

during embedding.

At encoding time, we calculate the expected distortion value for the adversary,

which in some sense measures how hard it would be for the adversary to find the

original word, wo, given the mark carrying word, wc. Note that, if the adversary

can replace wc with wo, then not only the mark bit encoded by that word will be

removed, the distortion introduced by the watermarking process will also be undone.

In our implementation, E(d2(wc; wo, so)) is calculated by summing up the differences

of every sense of wc to the original (word,sense) pair, (wo, so) normalized over the

number of senses of wc, which is denoted with |S(wc)|. This is formalized as below:

E(d2(wc; wo, so)) =

∑
si∈S(wc)

sim(wc, si; wo, so)

|S(wc)|
(5.4)

where so is the sense of the original word, wo, in the original document, and

sim(wc, si; wo, so) is the similarity based difference between (word,sense) pairs, it

increases as the words get more dissimilar.

If there are more than one candidate homograph with the same color (the color

that is required to encode the current bit of the message, m) then the one with the

maximum E(d2()) value is picked. Since we are using the WordNet-based similar-

ity measures, the difference between pairs from the same synonym set is the same

for all the words in that set, which makes the encoding distortion identical for all

alternative pairs from the same synonym set. However, this need not be the case if

alternative similarity measures are used. The following are summaries of the encoding

and decoding algorithms, based on the above discussion.

Steps of the encoding algorithm:

• Build graph G of (word,sense) pairs. Use WordNet to find synonym sets of

(word, sense) pairs. In addition, connect different senses of the same word



89

with a special edge in order to follow the links to every neighbor of a word

independent from its senses.

• Calculate differences between the (word,sense) pairs, d(wisensek
, wjsensel

), using

a similarity measure. Assign these values as edge weights in G.

• Select a subgraph GW of G using the secret key k.

• Color the graph GW . Detect the pairs of words (wi, wj), where wi and wj are in

the same synonym set with one of their senses, and have more than one sense.

In other words, these words act as homographs. Color wi and wj with opposite

colors in graph GW , using k to decide which one gets to be colored in blue (i.e,

encodes a “1”) and which one gets to be colored in green (i.e., encodes a “0”).

Color non-homographs as black.

• c = 1

• For each word wi in the cover document S

– bitc = M [c]

– if wi ∈ GW then replace wi with the neighbor that carries the color that

encodes bitc

if there are more than one neighbor that encodes bitc

for each, wj, of these neighbors calculate

E(d2(wj; wi, sk)) =

P

sl∈S(wj) sim(wj ,sl;wi,sk)

|S(wj)|

pick the neighbor with the maximum E(d2(wj; wi, sk)) value

Increment c (if c = |M | + 1 then set c = 1)

If the cover document’s size is long enough the message, M is embedded multiple

times. We assume that the message M , that is input to the watermarking system, has

already been encrypted and encoded in a way that it is possible to find the message

termination point when reading it sequentially from an infinite tape. The encrypted

M could have an agreed-upon fixed length (symmetric encryption preserves length, so



90

we would know how to chop the decoded message for decryption). Or, alternatively,

if the length of M is unpredictable and cannot be agreed upon ahead of time, the

encrypted M could be padded at its end with a special symbol, i.e. #, that would

act as a separator between two consecutive copies of the encryption.

Steps of the decoding algorithm:

• Build the same graph G of (word,sense) pairs using the same difference function

as the one used for the encoding process

• Select a subgraph GW of G using the secret key k

• Color the graph GW using k (as for the encoding process)

• c = 1

• For each word wi in the cover document S

– if wi ∈ GW then check the color of the node that represents wi.

if it is black, move to the next word

if it is blue, assign 1 to M [c] and increment c

if it is green, assign 0 to M [c] and increment c

The decoding algorithm is simply a series of dictionary lookups. We envision

that this simplicity will enable our system to be used for watermaking online text

documents. Then, web crawlers that are indexing web pages can also check for

watermarks or metadata embedded using our system in the pages they visit.

5.3.2 Context-Dependent Synonyms

The notion of a synonym that WordNet subtends is, as in any fixed dictionary,

rigid in the sense that it fails to capture the notion of a context-dependent synonym:

A synonym relationship that holds only within a particular text document. Such a

relationship holds between words that in general are not synonyms, but that in a
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particular text’s context are de facto synonyms, pretty much the way “the sleuth”

is synonym of “Sherlock Holmes” in most of Arthur Conan Doyle’s books, but is a

synonym of “Hercule Poirot” or “Miss Marple” in some of Agatha Christie’s books.

Fully automating the encoding of such a scheme is highly nontrivial and error-

prone, and we therefore envision a semi-automatic interactive encoding mechanism

where the text’s author decides on the acceptability (or lack thereof) of substitutions

proposed by the system, or even suggests substitutions from scratch. This is especially

appropriate in texts where the quality of the prose is as important as the meaning it

carries, or when a fully automatic process is likely to introduce unacceptable errors.

For example, Daniel Defoe would not approve a proposed substitution of “Friday” by

“sixth day of the week” in the context of his Robinson Crusoe book.

There are two benefits to this more general notion of a synonym: (i) it increases the

repertoire of effective synonyms available, thereby increasing encoding capacity; and

(ii) it is harder for the adversary to un-do, both because of the context-dependency

and because an outside (possibly human) adversary incurs a larger time penalty to

analyze and comprehend the text than the author.

5.3.3 Generalization Substitutions

Further resilience can be provided by the use of meaning-preserving generalizing

substitutions (replacing the specific by the general, e.g., “lion” by the less specific “big

cat” or the even more general “carnivore”). As stated earlier, WordNet includes a

“is a” types of hierarchies that we could use to achieve this – we could advantageously

“move up” one of these is a hierarchies of WordNet in a manner that does not destroy

meaning: For example, it may be perfectly acceptable to replace “lion” with “big cat”

or even with “carnivore” even though the latter two are not synonyms of the former

(or of each other), as lion-big cat-carnivore form a chain of ancestors in the is a

hierarchy. But the substitution of “lion” with “carnivore” would not be acceptable

if the text also contains much about a wolf (which is also a carnivore), although the
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substitution of “lion” with “big cat” is still acceptable (as would be the substitution

of “wolf” with “canine”). More formally, when making a substitution we are allowed

to move up a particular link in the is a hierarchy as long as doing so does not gobble

up an extra descendent node that also appears in the text (as that would be meaning-

damaging). Because in a WordNet hierarchy there can be more than one parent, it is

possible that we are unable to move up one link, but able to move up another link:

For example, in a text with a camel and a kangaroo, we cannot generalize “kangaroo”

to “herbivore” but we can generalize it to “marsupial”.

The above process makes it harder for the adversary to using such transformations

to attack the watermark, for two reasons: (i) Many of these substitutions have already

been applied (by the encoding process) to the maximum extent possible (“as far up

the hierarchy as possible”); and (ii) most hierarchies have a higher branching factor

going down than going up (many children, fewer parents), and therefore replacing the

general by the specific in an attack is problematic (the adversary has more choices).

5.4 Experimental Results :EQUMARK

We have implemented a natural language watermarking tool, EQUMARK, accord-

ing to the system design proposed in Section 5.3. Equmark is implemented in Perl

and uses WordNet::Similarity and WordNet::QueryData libraries [47,87] 3. WordNet

2.1 is used during the experiments presented in this section.

We used pathlen() function of WordNet::Similarity library in order to learn the

difference between (word,sense) pairs, in other words:

sim(wj , sl; wi, sk) = pathlen(wj , sl; wi, sk)

pathlen() outputs the length of shortest path between the (word,sense) pairs in the

“is-a” hierarchy of WordNet. As we have mentioned in Section 5.3, pathlen measure is

3These libraries are implemented in Perl language and they are freely available from CPAN website
at http://cpan.org/. Last visited on May 9th 2006.
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a baseline metric and is equal to the inverse of the length of shortest path between the

two concepts. Alternatively pathlen() can be replaced with other similarity measures.

Equmark builds the graph, GW , as follows. listAllWords(), a function from the

WordNet::QueryData library, is used to generate a list of words, L. Later the content

of L is increased by exploring the synonyms of the words in the initially generated

list. After this step, Equmark assigns random colors to all words in L, using the

secret key k. Later, words from L are processed by taking one word, wi, at a time

from the beginning of L and starting a breadth first exploration of WordNet, where

wi is the root. If a node is assigned blue or green initially, during the breadth first

traversal, we try to color the neighbors (synonyms) of each word with the opposite

of the word’s color. Whenever there is a conflict, Equmark colors the newly explored

node with black, marking it as a “no-encoding” word.

A node gets an encoding color, i.e. blue or green, if it has more than one sense

and there is at least one synonym for each one of its senses. All single sense words

(monosemous words) are colored with black, since they are not “ambiguous”, they do

not increase the resilience if they are used for marking.

We color a word with black if it does not have any synonyms for one of its senses,

even though it has more than one sense. For example, consider the word “jury”:

• jury – (a body of citizens sworn to give a true verdict according to the evidence

presented in a court of law)

• jury, panel – (a committee appointed to judge a competition)

We can not include the word “jury” in our set of encoding words in the current

system, because if we color it with blue or green, and if it appears with its first

sense in the cover document we will not be able to undo the effect of its color to

the encoding. Wet Paper Codes [88] can be used in order to be able to increase the

capacity of watermarking with Equmark. When the wet paper codes are used, we

can mark the word “jury” as a stuck cell if it is used in its first sense in the cover

document. But, when it is used in its second sense, we can mark it as a changeable
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cell and use it for encoding. Note that, if word sense disambiguation was possible

at watermark decoding time, this limitation would not be an issue, since we could

discard those word senses without synonyms (our decoding algorithm is a series of

dictionary lookups).

An adversary who is aware of the fact that some of the words in GW have to

be colored “black” due to the phenomenon explained in the previous paragraph, can

find instances of those words in the watermarked text (by checking if a word does

not have synonyms for at least one of its senses). Later, the adversary can randomly

alter those words, since there is a non-zero probability of substituting them with an

encoding word. This attack will add noise into the decoded message. In the scope

of this work, the effects of such attacks are not quantified. But as mentioned above,

Equmark can be enhanced to be able to prevent the effect of noise addition to the

watermark message either by the use of wet paper codes or error correction codes;

besides increasing the bandwidth, this enhancement will also increase the resiliency

of the system.

We still included a “relaxation” on the above coloring restriction in our imple-

mentation by checking the WordNet frequency value for the words that have more

than one sense and some of them have at least one synonym, we check the senses

that do not have any synonyms: if the frequency of this (word,sense) pair is below

a threshold, we interpret it as “this pair is very rarely used in the language”, and it

is unlikely that we will encounter this particular sense of wi in the cover document.

Thus, we color wi with an encoding color. See Table 5.2 for a sample distribution of

colors for different word categories.

Equmark takes in four inputs: a cover document, a message M , a colored graph

GW and an embedding distortion threshold D1.

In our experiments, we took our cover documents from a sense-tagged corpus,

Semantic Concordance (SemCor) [83]. We used SemCor2.1 4 since its sense-tags are

4Downloadable from Rada Mihalcea’s homepage at http://www.cs.unt.edu/∼rada/downloads.

html. Last visited on May 9th 2006.
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Table 5.2
A sample coloring performed by Equmark

Category Black Green Blue

Noun 141408 7873 7998

Verb 7716 1919 1885

Adverb 4107 261 257

Adjective 19058 1940 1976

Total 172289 11993 12116
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mapped to WordNet 2.1 instead of the original SemCor that is tagged with WordNet

1.6 senses. SemCor has three parts: first part, brown1, consists of 103 semantically

tagged Brown Corpus [89] files, in which all content words are tagged; second part,

brown2, consists of 83 semantically tagged Brown Corpus files, in which all content

words are tagged; third part, brownv, consists of 166 semantically tagged Brown

Corpus files, in which only verbs are tagged. We have used nouns, and verbs as

watermark carrying words.

Using already sense-tagged input text was a natural choice for our experiments

since it let us focus on analyzing the amount of distortion the embedding incurs on the

cover document and the resilience we can achieve. In another setting, at the encoding

time, the author of the document might be prompted for help on disambiguating the

sense of ambiguous words. As we have mentioned before, there is no need for sense

disambiguation at decoding time.

Equmark restricts the cumulative embedding threshold to be below D1. We used

pathlen() as the difference function. Refer to Section 5.2.1 for a discussion of the

model proposed by Moulin et al.

In our experiments, d1(wc, sc; wo, so) was always equal to 1 as we consider substi-

tution only between the words from the same synonym set. d1(wi, sl; wj, sk) = 0 only

when wj = wi, since pathlen(wi, sl; wj, sk) is length of the shortest path between the

two concepts. However, usage of other similarity measures as the difference function

might change this.

Our embedding algorithm picks synonyms that have maximum expected d2 as

described in Section 5.3 and Equation 5.4.

Refer to Figure 5.3 for an analysis of the relationship between the embedding

distortion (x-axis), D1, and the resilience (y-axis), D2.

The graph in the Figure 5.3 corresponds to an experiment run over one of the

brown1 files, which has 1815 tagged tokens. Here, the watermark was a random

string of 10 bits, for the sake of readability of the graph. Larger number of watermark
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Fig. 5.3. Each point indicates a successful watermark insertion. The
X-axis is the incurred distortion to the cover document and Y-axis
is the expected distortion that will be incurred by adversary to undo
the watermark.

bits create more branches in the search tree and results in very dense graphs. The

maximum distortion, D1 in this experiment was limited to 15 substitutions.

5.5 Related Work

Natural language information hiding systems, that are based on modifying a

cover document, mainly re-write the document using linguistic transformations such

as synonym substitution [48, 90], paraphrasing [81, 91] or translation to another

language [92]. Most of the proposed information hiding systems are designed for
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steganography. Even though the steganography systems do not need to take into

consideration an active warden, they still need to obey to stealthiness constraints.

This brings both watermarking and steganography to the same point: imposing min-

imum embedding distortion to the cover document. This requirement is also used

as a justification for performing isolated changes on the cover document by doing in

place replacement of mark carrying units i.e. words or sentences, with a synonym

instead of text-wide-transformations. To the best of authors’ knowledge this is the

first work that quantifies distortion done on the cover document and that is guided

by both the message insertion and the resilience requirements.

T-Lex is one of the first implemented systems that embed hidden information by

synonym substitution on a cover document [48,80]. T-Lex first generates a database

of synonyms by picking the words that appear only in the same set of synonym

sets from WordNet. For example, if the synonym sets are given as S1 : {w1, w2},

S2 : {w1, w2, w3} the words w1 and w2 are inserted into this database as synonyms

and w3 is filtered out. The intersections between distinct synonym sets are eliminated

to avoid usage of ambiguous words for encoding. This filtering causes the use of

uncommon words while performing the substitutions (e.g. replacing “nothing” with

“nada”) due to the fact that common words tend to span through several unrelated

synonym sets [93]. A given message is embedded into the cover text using the synonym

set database as follows. First, the letters of the message text are Huffman coded

according to English letter frequencies. The Huffman coded message is embedded

into message carrying words in the cover text by replacing them with their synonyms

in the synonym database of T-Lex . The synonym sets in this database are interpreted

as a mixed-radix digit encoding according to the set elements’ alphabetical order.

In [80], Bergmair provides a survey of linguistic steganography. He also discusses

the need for an accurate word sense disambiguator for a fully automated synonym

substitution based steganography, where sense disambiguation is required both at de-

coding and encoding time. The lack of accurate disambiguation forces the synonym

substitution based information hiding systems to restrict their dictionaries to a sub-
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set of words with certain features. Besides decreasing the communication bandwidth,

such restrictions cause the systems to favor use of rare words for encoding infor-

mation [93]. In another work, Bergmair et al. proposes a Human Interactive Proof

system which exploits the fact that even though machines can not disambiguate senses

of words, humans can do disambiguation highly accurately [49].

Grothoff et al presented so far the only steganography system that advantageously

exploits the weaknesses of current natural language processing tools [92]. They use the

low quality of automatically translated text to conceal the existence of an embedded

stego message. In their system, several machine translation systems are used to have

several alternative translations for a given sentence, if the machine translation systems

had been perfect they would have produced very similar or the same translation

sentence. A similar approach has been introduced for using different MP3 encoders

for steganography in [94]. In the system proposed by Grothoff et al., the quality of

the output document is less important than being able to deliver the message and

the stealthiness of the communication. Thus, they do not need to limit the distortion

done on a cover document as long as it carries the message and shows the statistical

and stylistic characteristics of machine translation systems’ output.

Privacy-preserving data mining techniques aim to ensure privacy of the raw local

data while supporting accurate reconstruction of the global data mining models. Data

perturbation is one of the approaches used in this area. This approach is based on

distortion of the user data by user-set parameters in a probabilistic manner such

that accurate models for joint data of several users can be generated by a central

data mining process. The data miner is given the perturbed database, V , and the

perturbation matrix, A, where Avu = p(u → v) and p(u → v) is the probability of

an original user record, u ∈ U , being perturbed into a record v ∈ V . U is the user’s

local copy of the database. After receiving V and A, the data miner attempts to

reconstruct the original distribution of database U and generate data mining models

for U .
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Agrawal et al. in [95] proposes further randomization of perturbation parame-

ters in, A, for each user separately in order to provide extra privacy for the users.

Randomization of the perturbation parameters make it harder for the data miner to

guess the original values of the records in U . Previous data perturbation systems were

using deterministic perturbation matrices. Agrawal et al. quantify this extra privacy

by enforcing an upper limit on the ratio of the probability of a record, v ∈ V being

perturbed from either of the two records, u1 ∈ U or u2 ∈ U . This quantification is

formalized below, where SX is the domain set for the values of the records in database

X:

• A randomization R(U) is at most γ-amplifying for v ∈ SV if

∀u1, u2 ∈ SU :
p(u1 → v)

p(u2 → v)
≤ γ (5.5)

where γ ≥ 1 and ∃u : p(u → v) > 0.

Above assertion also means that the ratio of any two matrix entries in A should

not be more than γ.

This idea has a similar intuitive motivation as what we are proposing. While

Agrawal et al. propose randomization of perturbation parameters for improving

privacy of data mining, we propose increasing ambiguity of a watermark carrying

document for improving the resiliency of watermarking.

5.6 Summary

We presented and discussed a synonym-based natural language watermarking sys-

tem that we designed and built. This is the first instance of the use of quantified

notions of differences between sentences in natural language information hiding. The

use we make of such differences is twofold. First, we use them to maximize capacity

without exceeding the maximum allowable cumulative distortion, and achieve re-

silience by giving preference to ambiguity-increasing transformations that are harder

for the adversary to un-do. Second, we achieve additional resilience by getting close
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to the maximum allowable cumulative distortion ourselves, as a way of preventing the

adversary from carrying out attacking transformations (as these are likely to push the

text beyond the allowable distortion limit).

The current system can be enhanced in the following ways.

• Move from a solely WordNet-based difference function, to a more domain-

specific difference function that is also corpus-based. For example, using the

Reuters corpus in addition to WordNet will result in a better watermarking

scheme for Reuters articles.

• Increasing the information-carrying capacity through the use of wet-paper codes [88].

The specific way this increases capacity was discussed in Section 5.4.

• Increasing the resiliency through the use of wet-paper codes or error correction

codes. The specific way this increases resiliency was again discussed in Section

5.4.

• Making experiments to evaluate the performance of copyright infringement de-

tection systems for two cases; where the original document is either watermarked

or not-watermarked.

• Using a more powerful ontology to increase both capacity and resilience. This

kind of knowledge base would allow such substitutions as replacing “Washington

D.C.” by “the capital”. Such a powerful ontology can provide us the ability to

re-write a sentence like “Bush returned to Washington D.C” as “The President

came back to the capital”.
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6. SUMMARY AND CONCLUSIONS

We have demonstrated that Natural Language Processing (NLP) technology provides

methods that can be used to significantly enhance the security of some important

applications.

In Chapter 2, we propose, develop and evaluate a system that automatically gen-

erates memorable mnemonics for a given password based on a text-corpus. Our

system helps users remember crack-resistant passwords by automatically generating

mnemonics.

In Chapter 3, we propose a password mnemonic scheme that can handle multiple

passwords with a single mnemonic, and is applicable to any existing system without

any modification, as it does not require any form of involvement from the service

provider (e.g., bank, brokerage). Our approach consists of generating a mnemonic

sentence that helps the users remember a multiplicity of truly random passwords,

which are independently selected. The scheme is such that changes to passwords do

not necessitate a change in the mnemonic sentence that the user memorizes. Hence,

passwords can be changed without any additional burden on the memory of the

user, thereby increasing the system’s security. An adversary who breaks one of the

passwords encoded in the mnemonic sentence does not gain information about the

other passwords.

In Chapter 4, we deal with the question of authentication in environments where

the inputs are constrained to be yes/no responses to statements displayed on the

user’s screen (e.g., authentication in hands-free environments, authentication to tiny

mobile devices and authentication of people with disabilities, etc.) We present a

mnemonic-based system for such environments that combines good usability with

high security, and has many additional features such as (to mention a few) resistance

to phishing, keystroke-logging, resistance to duress and physical coercion of the user,
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and compatibility with currently deployed systems and password file formats (hence

it can co-exist with existing login mechanism). An important ingredient in our recipe

is the use of a mnemonic that enables the user to produce a long enough (hence more

secure) string of appropriate yes/no answers to displayed prompts (i.e., challenges).

Another important ingredient is the non-adaptive nature of these challenges – so

they are inherently non-revealing to a shoulder-surfer or phisher. The mnemonic is

a sentence or a set of words known only to the user and authenticating server (in

the server they are stored in a cryptographically protected way rather than in the

clear) – the users are never asked to enter their mnemonics to the system, they only

use the mnemonic to answer the server’s challenge questions. Our usage of text for

mnemonics is not necessary but it is what we implemented for reasons of convenience

and compatibility with existing login mechanisms; we could equally well have used

speech, video, or pictures.

In Chapter 5, we explore another application of the techniques we presented in

the previous chapters: The resilient watermarking of natural language text through

a mechanism that was previously thought to be inherently non-resilient, namely syn-

onym substitution (we used synonym substitution in the first three chapters to encode

passwords into mnemonic sentences). We proposed a better way to use synonym sub-

stitution, one that is no longer entirely guided by the mark-insertion process: It is

also guided by a resilience requirement, subject to a maximum allowed distortion con-

straint (above which the value of the document becomes unacceptable for the purpose

of the particular application context). When there are many alternatives to carry out

a substitution on a word, we prioritize these alternatives according to a quantitative

resilience criterion and use them in that order. In a nutshell, we favor the more

ambiguous alternatives. In fact not only do we attempt to achieve the maximum am-

biguity, but we want to simultaneously be as close as possible to the above-mentioned

distortion limit, as that prevents the adversary from doing further transformations

without exceeding the damage threshold; that is, we continue to modify the document

even after the text has “confessed” to the mark, for the dual purpose of maximiz-
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ing ambiguity while deliberately getting as close as possible to the distortion limit.

The quantification we use makes possible an application of the existing information-

theoretic framework, to the natural language domain, which has unique challenges

not present in the image or audio domains. The resilience stems from both (i) the

fact that the adversary does not know where the changes were made, and (ii) the fact

that automated disambiguation is a major difficulty faced by any natural language

processing system (what is bad news for the natural language processing area, is good

news for our scheme’s resilience).
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